DK

tìm số tự nhiên x để 2^x +1 là số chính phương

MW
24 tháng 3 2021 lúc 18:10

Giả sử \(^{2^x+1=a^2}\), ta có:

<=> \(2^x=a^2-1\)

<=>\(2^x=a^2-a+a-1\)

<=>\(2^x=a\left(a-1\right)+\left(a-1\right)\)

<=>\(2^x=\left(a-1\right)\left(a+1\right)\)

=>

\(a-1=2^y\)<=>\(a=2^y+1\)\(a+1=2^z\)<=>\(a=2^z-1\)

(x=y+z)

=> \(2^y+1=2^z-1\)

<=>\(2^z-2^y=2\)

<=>\(2\left(2^{z-1}-2^{y-1}\right)=2\)

<=>\(2^{z-1}-2^{y-1}=1\)(chia cả 2 vế cho 2) (*)

Vì hiệu hai lũy thừa cơ số 2 và mũ khác 0 luôn là một số chia hết cho 2 nên biểu thức (*) xảy ra khi và chỉ khi:

\(2^{y-1}=1\)<=> y-1 = 0 <=> y=1\(2^{z-1}=2\)<=> z-1 = 1 <=> z=2

=> x = y+z = 1+2 = 3.

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NX
Xem chi tiết
NT
Xem chi tiết
TK
Xem chi tiết
PT
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết
HH
Xem chi tiết