S=1/2^3+1/3^3+1/4^3+....+1/2009^3
chứng minh rằng:S<1/4
Tính tổng:S=1+2+2^2+2^3+2^4+...+2^100.Chứng minh rằng S chia hết cho 3 và tìm x biết rằng:S+1=2x
S=(1+2)+(2^2+2^3)+(2^4+2^5)+....+(2^99+2^100)
S=3+3.2^2+3.2^4+.....+3.2^99
S=3.(2^2+2^4+.....+2^99)
Vì 3 chia hết 3=>3.(2^2+2^4+....+2^99)
=>S chia hết 3
2S=2+2^2+2^3+2^4+.....+2^101
2S-S=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+2^4+....+2^100)
S=2^101-1
S+1=2^101-1+1=2^101
=>x=101
Cho S=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\)
Chứng minh rằng:S<100
\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}-1}\right)\)
\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{2^2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{2^3}+...+\frac{1}{15}\right)+...+\left(\frac{1}{2^{99}}+...+\frac{1}{2^{100}-1}\right)\)
ta chia S thành 10 nhóm: 1 và 99 nhóm như trên
nhận xét:
\(\frac{1}{2}+\frac{1}{3}
Cho a,b,c >0 và a2+b2+c2=3
Chứng minh rằng \(\dfrac{1}{a^3+a+2}\) + \(\dfrac{1}{b^3+b+2}\) + \(\dfrac{1}{c^3+c+2}\) ≥ \(\dfrac{3}{4}\)
Ta chứng minh BĐT sau:
\(\dfrac{1}{x^3+x+2}\ge\dfrac{-x^2+3}{8}\) với \(x>0\)
Thật vậy, BĐT tương đương:
\(\left(x^2-3\right)\left(x^3+x+2\right)+8\ge0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^3+2x^2+x+2\right)\ge0\) (luôn đúng)
Áp dụng:
\(\Rightarrow VT\ge\dfrac{-a^2+3}{8}+\dfrac{-b^2+3}{8}+\dfrac{-c^2+3}{8}=\dfrac{9-\left(a^2+b^2+c^2\right)}{8}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
chứng minh rằng:s=1/2+1/3+1/4+....+n không thể làm 1 số nguyên
Chứng minh rằng:S=1^4+2^4+3^4+....+2020^4 không là số chính phương.
Cho S= 21+22+23+...+2100
Chứng minh rằng:S chia hết cho 3 và chia hết cho 15
S = (21+22)+(23+24)+...+(299+2100)
S = 2.(1+2)+23.(1+2)+...+299.(1+2)
S = 2.3+23.3+...+299.3
S = 3.(2+23+...+299)
=> S chia hết cho 3
S = (21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
S = 2.(1+2+4+16)+25.(1+2+4+16)+...+297.(1+2+4+16)
S = 2.15+25.15+...+297.15
S = 15.(2+25+...+297)
=> S chia hết cho 15
Cho S= 21+22+23+...+2100
Chứng minh rằng:S chia hết cho 3 và chia hết cho 15
Chứng minh rằng:S=14+24+34+....+20204 không là số chính phương.
em
lớp 6
not
lớp 8
hết
HT
Toán nâng cao của lớp 6 có cái này nè , em có làm một bài nhưng mà không biết làm bài này ==" thông cẻm . Nhục cái mặt quá :)
Ở đâu vậy em?
chứng minh rằng 1/2^3 +1/3^3 +1/4^3+...+ 1/2009^3< 1/4