Những câu hỏi liên quan
HD
Xem chi tiết
NT
Xem chi tiết
SL
18 tháng 1 2018 lúc 16:35

a) n + 5 \(⋮\) n - 1 <=> (n - 1) + 6 \(⋮\) n - 1

=> 6 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)

=> n - 1 \(\in\) Ư(6) = \(\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Đến đây tự làm tiếp nhé!

Bình luận (0)
TV
Xem chi tiết
KM
17 tháng 1 2016 lúc 15:13

b.2n-4 chia hết cho n+2<=>2n+4-8 chia hết cho n+2

                                 <=>2(n+2)-8 chia het cho n+2

                                 <=>8 chia hết cho n+2

                                 <=> n+2 thuộc ước của 8

  còn lại tự tính nha

những câu hỏi khác cũng tương tự

tick nha

Bình luận (0)
DK
Xem chi tiết
H24
Xem chi tiết
NH
18 tháng 1 2018 lúc 16:56

a/ \(n+5⋮n-1\)

\(n-1⋮n-1\)

\(\Leftrightarrow6⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(6\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}n-1=1\\n-1=2\\n-1=3\\n-1=6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=2\\n=3\\n=4\\n=7\end{matrix}\right.\)

Vậy ...

b/ \(2n-4⋮n+2\)

\(n+2⋮n+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n-4⋮n+2\\2n+4⋮n+2\end{matrix}\right.\)

\(\Leftrightarrow8⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(8\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}n+2=1\\n+2=2\\n+2=4\\n+2=8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}n=-1\\n=0\\n=2\\n=6\end{matrix}\right.\)

Vậy ...

Bình luận (0)
PH
18 tháng 1 2018 lúc 20:02

Làm tiếp 2 phần sau.

c) \(6n+4⋮2n+1\)

\(\Leftrightarrow3\left(2n+1\right)+1⋮n+1\)

\(3\left(2n+1\right)⋮2n+1\) nên \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\)
\(n\) \(-2\) \(0\)

Vậy...

d) \(3-2n⋮n+1\)

\(\Leftrightarrow3-2\left(n+1\right)-2⋮n+1\)

\(2\left(n+1\right)⋮n+1\) nên \(\left(3+2\right)⋮n+1\Rightarrow n+1\inƯ\left(5\right)=\left\{-1;1;-5;5\right\}\)

Ta có bảng sau:

\(n+1\) \(-1\) \(1\) \(-5\) \(5\)
\(n\) \(-2\) \(0\) \(-6\) \(4\)

Vậy...

Bình luận (0)
HD
25 tháng 2 2020 lúc 14:53

Giống câu hỏi của mk

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
PM
15 tháng 1 2016 lúc 11:14

a,n=1,2,3,4

 

Bình luận (0)
NP
Xem chi tiết
PQ
24 tháng 1 2016 lúc 11:57

=>(n2+3n)+(3n+9)+2 chia hết cho n+3

=>n(n+3)+3(n+3)+2 chia hết cho n+3

=>(n+3)(n+3)+2 chia hết cho n+3

Mà (n+3)(n+3) chia hết cho n+3

=>2 chia hết cho n+3

=> n+3 thuộc Ư(2)={1;2;-1;-2}

=>n thuộc {-2;-1;-4;-5}

Bình luận (0)
PQ
24 tháng 1 2016 lúc 11:58

Để A nguyên

=>n2-3n+1 chia hết cho n+1

=>(n2-1)-(3n+3)+1+1-3 chia hết cho n+1

=>(n-1)(n+1)-3(n+1)-1 chia hết cho n+1

Mà (n-1)(n+1) và 3(n+1) chia hết cho n+1

=>1 chia hết cho n+1

=>n+1 thuộc Ư(1)={1;-1}

=>n thuộc {0;-2}

Bình luận (0)
NP
24 tháng 1 2016 lúc 12:00

bài nào z bn

 

Bình luận (0)
TH
Xem chi tiết
NT
16 tháng 11 2022 lúc 22:27

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

Bình luận (0)
NT
Xem chi tiết
H24
8 tháng 8 2023 lúc 12:08

a, Ta có : \(\text{n + 5 = (n - 1)+6}\)

Vì \(\text{(n-1) ⋮ n-1}\)

Nên để \(\text{n+5 ⋮ n-1}\) `n-1`

Thì \(\text{6 ⋮ n-1}\) 

\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)

\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)

\(\text{________________________________________________________}\)

b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)

Vì \(\text{2(n+2) ⋮ n+2}\)

Nên để \(\text{2n-4 ⋮ n+2}\)

Thì \(\text{8 ⋮ n+2}\)

\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)

\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )

\(\text{_________________________________________________________________ }\)

c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)

Vì \(\text{3(2n+1) ⋮ 2n+1}\)

Nên để\(\text{ 6n+4 ⋮ 2n+1}\)

Thì \(\text{1 ⋮ 2n+1}\)

\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)

\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)

\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )

\(\text{_______________________________________}\)

Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)

Vì \(\text{-2(n+1) ⋮ n+1}\)

Nên để \(\text{3-2n ⋮ n+1}\)

Thì\(\text{ 5 ⋮ n + 1}\)

\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)

\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )

 

Bình luận (0)