Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TT
Xem chi tiết
SN
3 tháng 7 2016 lúc 12:54

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\)

\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{10}}\)

\(2A=1-\frac{1}{3^{10}}\)

\(A=\frac{1-\frac{1}{3^{10}}}{2}\)

Bình luận (0)
NT
Xem chi tiết
DH
25 tháng 10 2017 lúc 14:17

\(\frac{6:\frac{3}{5}-1\frac{1}{6}.\frac{6}{7}}{4\frac{1}{5}.\frac{10}{11}+5\frac{2}{11}}=\frac{10-\frac{7}{6}.\frac{6}{7}}{\frac{21}{5}.\frac{10}{11}+\frac{57}{11}}=\frac{10-1}{\frac{42}{11}+\frac{57}{11}}=\frac{9}{9}=1\)

Bình luận (0)
NH
Xem chi tiết
NT
Xem chi tiết
GM
26 tháng 1 2016 lúc 13:18

bạn bấm vào đúng 0 sẽ ra kết quả 

mình làm bài này rồi

Bình luận (0)
H24
26 tháng 1 2016 lúc 13:31

Đừng tin bn Thạch bạn ấy nói dối đấy

Chuẩn 100% luôn tik nha

Bình luận (0)
NT
Xem chi tiết
HG
18 tháng 9 2015 lúc 23:33

\(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)

Xét mẫu:

\(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)

\(\left(1+\frac{2013}{2}\right)+\left(1+\frac{2012}{3}\right)+...+\left(1+\frac{1}{2014}\right)+1\)

\(\frac{2014}{2}+\frac{2014}{3}+....+\frac{2014}{2013}+\frac{2014}{2014}\)

\(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)

\(\Rightarrow S=\frac{1}{2014}\)

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
H24
26 tháng 1 2016 lúc 20:59

Ta có: Tử là:

B=\(\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\left(1+1+...+1\right)\)            (2013 số hạng 1)

   =\(\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+\left(1\right)\)

  =\(\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)

 =\(2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)

=>A=\(\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2014

Bình luận (0)
GM
26 tháng 1 2016 lúc 20:54

bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ

Bình luận (0)
TA
26 tháng 1 2016 lúc 20:56

94 nếu nháy chuột vào đúng 0 sẽ cho biết đúng hay sai đó bạn

Bình luận (0)
NV
Xem chi tiết
PA
25 tháng 2 2016 lúc 17:33

b) trước hết ta cần chứng minh nếu x+y+z=0 thì x^3+y^3+z^3=3xyz

ta có x+y+z=0==> x=-(y+z) 

             <=> \(x^3=-\left(y^3+z^3+3yz\left(y+z\right)\right)\)

           <=> \(x^3+y^3+z^3=-3yz\left(y+z\right)\)

      <=> \(x^3+y^3+z^3=3xyz\)( cì y+z=-x)

 áp dụng vào bài ta có \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

 do đó M=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)

Bình luận (0)