Tính giá trị biểu thức .
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{^{10}}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính giá trị biểu thức :
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^4}+....+\frac{1}{3^{10}}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}\)
\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^9}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{10}}\)
\(2A=1-\frac{1}{3^{10}}\)
\(A=\frac{1-\frac{1}{3^{10}}}{2}\)
Tính giá trị biểu thức :
\(\frac{6:\frac{3}{5}-1\frac{1}{6}\cdot\frac{6}{7}}{4\frac{1}{5}\cdot\frac{10}{11}+5\frac{2}{11}}\)
\(\frac{6:\frac{3}{5}-1\frac{1}{6}.\frac{6}{7}}{4\frac{1}{5}.\frac{10}{11}+5\frac{2}{11}}=\frac{10-\frac{7}{6}.\frac{6}{7}}{\frac{21}{5}.\frac{10}{11}+\frac{57}{11}}=\frac{10-1}{\frac{42}{11}+\frac{57}{11}}=\frac{9}{9}=1\)
Cho biểu thức A=\(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
hãy thực hiện phép tính và cho bt giá trị của biểu thức A
Tính giá trị biểu thức :
\(A=\frac{\frac{1}{2013}+\frac{2}{2012}+\frac{3}{2011}+...+\frac{2011}{3}+\frac{2012}{2}+\frac{2013}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}}\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Đừng tin bn Thạch bạn ấy nói dối đấy
Chuẩn 100% luôn tik nha
Tính giá trị biểu thức \(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}\) .
\(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
Xét mẫu:
\(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)
= \(\left(1+\frac{2013}{2}\right)+\left(1+\frac{2012}{3}\right)+...+\left(1+\frac{1}{2014}\right)+1\)
= \(\frac{2014}{2}+\frac{2014}{3}+....+\frac{2014}{2013}+\frac{2014}{2014}\)
= \(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)
\(\Rightarrow S=\frac{1}{2014}\)
Tính giá trị biểu thức \(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}\) .
Tính giá trị biểu thức \(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}\) .
Tính giá trị biểu thức :
\(A=\frac{\frac{1}{2013}+\frac{2}{2012}+\frac{3}{2011}+...+\frac{2011}{3}+\frac{2012}{2}+\frac{2013}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}}\)
Ta có: Tử là:
B=\(\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\left(1+1+...+1\right)\) (2013 số hạng 1)
=\(\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+\left(1\right)\)
=\(\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
=\(2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
=>A=\(\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2014
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
94 nếu nháy chuột vào đúng 0 sẽ cho biết đúng hay sai đó bạn
a)tính giá trị biểu thức: \(A=\frac{2.1+1}{\left(1^2+1\right)^2}+\frac{2.2+1}{\left(2^2+2\right)^2}+\frac{2.3+1}{\left(3^2+3\right)^2}+...+\frac{2.2015+1}{\left(2015^2+2015\right)^2}+\frac{2.2016+1}{\left(2016^2+2016\right)^2}\)
b) cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\), tính giá trị biểu thức: \(M=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
b) trước hết ta cần chứng minh nếu x+y+z=0 thì x^3+y^3+z^3=3xyz
ta có x+y+z=0==> x=-(y+z)
<=> \(x^3=-\left(y^3+z^3+3yz\left(y+z\right)\right)\)
<=> \(x^3+y^3+z^3=-3yz\left(y+z\right)\)
<=> \(x^3+y^3+z^3=3xyz\)( cì y+z=-x)
áp dụng vào bài ta có \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
do đó M=\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)