Những câu hỏi liên quan
EC
Xem chi tiết
EC
11 tháng 8 2016 lúc 17:04

tính hộ mình nha

Bình luận (0)
SG
11 tháng 8 2016 lúc 17:08

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{15.16}\)

\(\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right).\frac{1}{x}=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{15.16}\right)\)

\(\frac{8+4+2+1}{16}.\frac{1}{x}=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(\frac{15}{16}.\frac{1}{x}=3.\left(1-\frac{1}{16}\right)\)

\(\frac{15}{16}.\frac{1}{x}=3.\frac{15}{16}\)

=> \(\frac{1}{x}=3\)

=> \(x=\frac{1}{3}\)

Bình luận (0)
NT
Xem chi tiết
DP
13 tháng 7 2017 lúc 17:12

\(1+\frac{1}{3}+\frac{1}{6}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)\right]=4\)

\(\Leftrightarrow1+2\left(\frac{1}{2}-\frac{1}{\left(x+1\right)}\right)=4\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{4-1}{2}=\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{3}{2}=-1\)

\(\Leftrightarrow x=-1+1=-2\)

Vậy x = -2 

Bình luận (0)
DP
16 tháng 7 2017 lúc 15:20

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)

\(\Leftrightarrow2\left(1-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=1\frac{1991}{1993}\div2\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{1992}{1993}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{1992}{1993}=\frac{1}{1993}\)

\(\Leftrightarrow x+1=1993\)

\(\Leftrightarrow x=1992\)

Bình luận (0)
MK
Xem chi tiết
H24
Xem chi tiết
SG
3 tháng 8 2016 lúc 16:03

\(x+\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}=1\)

\(x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}=1\)

\(x+1-\frac{1}{16}=1\)

\(x+\frac{15}{16}=1\)

\(x=1-\frac{15}{16}\)

\(x=\frac{1}{16}\)

Bình luận (0)
PS
Xem chi tiết
DP
5 tháng 7 2017 lúc 8:52

\(B=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....++\frac{1}{9}-\frac{1}{10}\)

\(B=1-\frac{1}{10}=\frac{9}{10}\)

\(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(C=1-\frac{1}{100}\)

\(C=\frac{99}{100}\)

Bình luận (0)
DP
5 tháng 7 2017 lúc 8:54

\(D=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{496.501}\)

\(D=\frac{1}{5}\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+.....+\frac{1}{496}-\frac{1}{501}\right)\)

\(D=\frac{1}{5}\cdot\left(1-\frac{1}{501}\right)=\frac{1}{5}\cdot\frac{500}{501}=\frac{100}{501}\)

Bình luận (0)
PT
5 tháng 7 2017 lúc 9:24

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)

 =    \(\frac{2-1}{2}+\frac{2-1}{2^2}+\frac{2-1}{2^3}+...+\frac{2-1}{2^n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^{n-1}}-\frac{1}{2^n}\)

 \(=1-\frac{1}{2^n}\)

   =\(\frac{2^n-1}{2^n}\)

Bình luận (0)
HM
Xem chi tiết
LC
23 tháng 8 2019 lúc 20:55

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

Bình luận (0)
LC
23 tháng 8 2019 lúc 20:57

b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)

\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

Bình luận (0)
LC
23 tháng 8 2019 lúc 21:00

c)\(C=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-...-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Bình luận (0)
NL
Xem chi tiết
LT
25 tháng 3 2018 lúc 20:19

x=2009 dễ mà

Bình luận (0)
CD
23 tháng 3 2018 lúc 21:25

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009

Bình luận (0)
H24
24 tháng 3 2018 lúc 15:27

Đề cho dài :v. Lần sau đăng từ từ nhé bạn, hôm qua đến giờ mình giải không hết đó =(((

a) \(\frac{1}{2}.x-\frac{3}{4}.x-\frac{7}{3}=-\frac{5}{6}=\frac{-5}{6}\)

\(\frac{1}{2}.x-\frac{3}{4}.x=\frac{-5}{6}+\frac{7}{3}=\frac{3}{2}\)

\(\Leftrightarrow x\left(\frac{1}{2}-\frac{3}{4}\right)=\frac{3}{2}\Leftrightarrow x.\frac{-1}{4}=\frac{3}{2}\)

\(x=\frac{3}{2}:\frac{-1}{4}=-6\)

b) \(\frac{4}{5}.x-x-\frac{3}{2}.x+\frac{4}{3}=\frac{1}{2}-\frac{6}{5}=-\frac{7}{10}\)

\(\Leftrightarrow x\left(\frac{4}{5}-\frac{3}{2}.\frac{4}{3}\right)=x\left(\frac{4}{5}-2\right)=-\frac{7}{10}\)

\(\Leftrightarrow x.\frac{-6}{5}=-\frac{7}{10}\)

\(x=-\frac{7}{10}:\frac{-6}{5}=\frac{7}{12}\)

c) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)

\(=1-\frac{1}{x+1}=\frac{2009}{2010}\)

\(\frac{1}{x+1}=1-\frac{2009}{2010}=\frac{1}{2010}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2010-1}=\frac{1}{2009}\). Vậy x= 2009

d) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}=\frac{4023}{2015}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4023}{2015}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{4023}{2015}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4023}{2015}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{4023}{2015}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{4023}{2015}:2=\frac{4023}{4030}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{4023}{4030}=\frac{-1004}{2015}=\frac{1004}{-2015}\)

\(x+1=\hept{\begin{cases}2015\\-2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2014\\-2016\end{cases}}\)

e) Bạn tự làm, nhiều quá mình làm không hết

Bình luận (0)
LC
Xem chi tiết
HV
26 tháng 3 2019 lúc 23:10

a)Xét 1/2-1/3-1/6=3/6-2/6-1/6=0

=> (1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).(1/2-1/3-1/6)=(1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).0=0

b) 4A=1.2.3.4+2.3.4.4+..+x(x+1)(x+2)4

         =1.2.3.4+2.3.4.5-1.2.3.4+...+x(x+1)(x+2)(x+3)-x(x+1)(x+2)(x-1)

         = (x-1)x(x+1)(x+2)

=> A=x(x+1)(x+2)(x-1)/4

Bình luận (0)
TA
Xem chi tiết
NA
2 tháng 8 2016 lúc 9:31

Hỏi đáp Toán

Bình luận (1)
TA
2 tháng 8 2016 lúc 9:56

Thank you ... Thank you ... Thank .... Thank SOOOOOO MUUUCHHH !!!!!!!!!

Bình luận (0)
TA
2 tháng 8 2016 lúc 10:01

Này! Câu thứ 2, đáp án : Vậy x = -2004

Mà cậu ghi là Vậy x=2001 đó!!

Bình luận (0)
CT
Xem chi tiết
DV
12 tháng 5 2015 lúc 20:39

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}+\frac{1}{2}x=\frac{3}{2}\)

\(\Leftrightarrow1-\frac{1}{200}+\frac{1}{2}x=\frac{3}{2}\)

\(\Leftrightarrow\frac{199}{200}+\frac{1}{2}x=\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{2}x=\frac{3}{2}-\frac{199}{200}\)

\(\Leftrightarrow\frac{1}{2}x=\frac{101}{200}\)

\(\Leftrightarrow x=\frac{101}{200}:\frac{1}{2}\)

\(\Leftrightarrow x=\frac{101}{100}\)

Bình luận (0)
GC
12 tháng 5 2015 lúc 20:38

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}=1-\frac{1}{200}=\frac{199}{200}\)

=> \(\frac{199}{200}+\frac{1}{2}x=1\frac{1}{2}=\frac{3}{2}\Rightarrow\frac{1}{2}x=\frac{101}{200}\Rightarrow x=\frac{101}{100}\)

đúng nhé

Bình luận (0)