Những câu hỏi liên quan
BV
Xem chi tiết
TH
Xem chi tiết
NN
28 tháng 5 2017 lúc 20:06

Bài 1:

Với mọi số hữu tỉ ta luôn có: \(\left\{{}\begin{matrix}x\le\left|x\right|\\-x\le\left|x\right|\end{matrix}\right.\)\(\left\{{}\begin{matrix}y\le\left|y\right|\\-y\le\left|y\right|\end{matrix}\right.\)

Cộng từng đẳng thức lại \(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)

Hay: \(\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\x+y\ge-\left(\left|x\right|+\left|y\right|\right)\end{matrix}\right.\)\(\Leftrightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu bằng xảy ra khi \(xy=0\)

Câu b tương tự nhé.

Bài 2:

Ta có:

\(A=\left|x-2001\right|+\left|x-1\right|=\left|2001-x\right|+\left|1-x\right|\ge\left|2001-x+x-1\right|=2000\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}2001-x\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow2001\ge x\ge1\)

Vậy \(_{min}A=2000\) khi \(2001\ge x\ge1\)

Bình luận (0)
NT
28 tháng 5 2017 lúc 19:46

Bài 2:

Ta có: \(A=\left|x-2001\right|+\left|x-1\right|=\left|2001-x\right|+\left|x-1\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:

\(A\ge\left|2001-x+x-1\right|=\left|2000\right|=2000\)

Dấu " = " khi \(\left\{{}\begin{matrix}2001-x\ge0\\x-1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)

Vậy \(MIN_A=2000\) khi \(1\le x\le2001\)


Bình luận (0)
DH
28 tháng 5 2017 lúc 21:03

Bài 2:

\(A=\left|x-2001\right|+\left|x-1\right|=\left|2001-x\right|+\left|x-1\right|\)

(do \(\left|A\left(x\right)\right|=\left|-A\left(x\right)\right|\))

Với mọi giá trị của \(x\in R\) ta có:

\(\left|2001-x\right|\ge2001-x;\left|x-1\right|\ge x-1\)

\(\Rightarrow\left|2001-x\right|+\left|x-1\right|\ge2001-x+x-1\)

\(\Rightarrow\left|2001-x\right|+\left|x-1\right|\ge2000\)

Hay \(A\ge2000\) với mọi giá trị của \(x\in R\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}2001-x\ge0\\x-1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)

\(\Rightarrow1\le x\le2001\)

Vậy GTNN của biểu thức A là 2000 đạt được khi và chỉ khi \(1\le x\le2001\)

Chúc bạn học tốt!!!

Bình luận (0)
DL
Xem chi tiết
H24
25 tháng 6 2019 lúc 8:05

a, Với mọi \(x;y\inℚ\)ta có :

\(x\le|x|\)và \(-x\le|x|;y\le|y|\)và \(-y\le|y|\)

\(\Rightarrow x+y\le|x|+|y|\)

    \(-x-y\le|x|+|y|\)

\(\Rightarrow x+y\ge-\left(|x|+|y|\right)\)

\(\Rightarrow-\left(|x|+|y|\right)\le x+y\le|x|+|y|\)

Vậy \(|x+y|\le|x|+|y|\)

Dấu "=" xảy ra khi xy \(\ge\) 0.
 

Bình luận (0)
H24
25 tháng 6 2019 lúc 8:10

b,

Theo kết quả câu a, ta có :

\(|\left(x-y\right)+y|\le|x-y|+|y|\)

\(\Rightarrow|x|\le|x-y|+|y|\Rightarrow|x|-|y|\le|x-y|\)

Dấu "=" xảy ra khi xy \(\ge\) 0 và   \(|x|\ge|y|\)
 

Bình luận (0)
HT
19 tháng 12 2019 lúc 17:04

a,với mọi x,ythuộc Q ta có:

x\(\le\)|x| và -x\(\le\)|x|; y\(\le\)|y| và -y \(\le\)|y|

\(\Rightarrow\hept{\begin{cases}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{cases}}\)

\(\orbr{\begin{cases}\left|x+y\right|=x+y\\\left|x+y\right|=-x-y\end{cases}}\)

\(\Rightarrow\)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
ND
25 tháng 11 2015 lúc 19:32

+ x>/ 0; y>/ 0   

      /x+y/  = /x/ + /y/ = x+y

+ x<0 ; y<0

    /x+y/ = /x/ + /y/ = - x -y  =-( x+y)

+ x >/ 0 ; y </ 0  =>   / x+ y/  = x+y < x < /x/ + /y/

   x</ 0 ; y>/ 0 tương tự

Vậy / x+y/ </ /x/ + /y/

Bình luận (0)
DL
Xem chi tiết
LV
Xem chi tiết
TH
Xem chi tiết
VT
14 tháng 12 2019 lúc 21:41

Với mọi \(x,y\in Q\) ta có:

\(\left\{{}\begin{matrix}x\le\left|x\right|;-x\le\left|x\right|\\y\le\left|y\right|;-y\le\left|y\right|\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y\le\left|x\right|+\left|y\right|\\-x-y\le\left|x\right|+\left|y\right|\end{matrix}\right.\)

\(\Rightarrow x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

\(\Rightarrow-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

\(\Rightarrow\left|x+y\right|\le\left|x\right|+\left|y\right|\left(đpcm\right).\)

Dấu '' = '' xảy ra khi \(xy\ge0.\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
DC
Xem chi tiết
HT
Xem chi tiết