Những câu hỏi liên quan
NN
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
SK
14 tháng 8 2016 lúc 19:45

S =  5 + 5+ 5+ ......... + 52006

5S = 52 + 53 + 54 + .......... + 52007

5S - S = ( 52 + 53 + 54 + .......... + 52007) - (  5 + 5+ 5+ ......... + 52006 

4S = 52007 - 5

S = \(\frac{5^{2007}-5}{4}\)

Bình luận (0)
LT
14 tháng 8 2016 lúc 19:50

a)\(S=5+5^2+5^3+.....+5^{2006}\Rightarrow5S=5^2+5^3+5^4+\)\(....+5^{2007}\)

\(\Rightarrow5S-S=\left(5^2+5^3+5^4+....+5^{2007}\right)-\left(5+5^2+5^3+.....+5^{2006}\right)\)

\(\Rightarrow4S=5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)

Bình luận (0)
DD
14 tháng 8 2016 lúc 19:53


\(a.S=5+5^2+5^3+......+5^{2006}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+.....+\left(5^{2001}+5^{2002}+.....+5^{2006}\right)\)

\(S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+......+5^{2001}\left(1+5+5^2+5^3+5^4+5^5\right)\)

\(S=5.3906+........+5^{2001}.3906\)

\(S=3906\left(5+....+5^{2001}\right)\)

\(b.S=3906\left(5+....+5^{2001}\right)\)

\(S=126.3\left(5+....+5^{2001}\right)\)

\(\Rightarrow\text{S chia hết cho 126}\)

Bình luận (0)
TQ
Xem chi tiết
NT
6 tháng 4 2017 lúc 19:51

Câu hỏi của Phương Thảo Trần - Toán lớp 0 | Học trực tuyến

Bình luận (0)
CT
Xem chi tiết
NQ
10 tháng 1 2021 lúc 21:58

Ta có 

\(5S=5^2+5^3+..+5^{2007}=\left(5+5^2+5^3+..+5^{2006}\right)+5^{2007}-5\)

hay \(5S=S+5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)

mà 

\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)..+\left(5^{2001}+5^{2004}\right)+\left(5^{2005}+5^{2006}\right)\)

hay \(S=126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}+6.5^{2005}\)

mà rõ ràng \(126.5+126.5^2+126.5^3+126.5^7+...+126.5^{2001}\)chia hết cho 126

còn \(6.5^{2005}\) không chia hết cho 126 nên S không chia hết cho 126.

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
ND
12 tháng 11 2016 lúc 20:25

ko chia hết được bán nhé nên không chứng minh được

Bình luận (0)
DH
12 tháng 11 2016 lúc 20:30

Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )

                = 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )

                = 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )

                = 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126

                = 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126

=> A ⋮ 126 ( đpcm )

Bình luận (0)
NN
30 tháng 1 2019 lúc 21:26

Ta có : S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + .... + ( 52003 + 52006 )

                = 5( 1 + 53 ) + 52 ( 1 + 53 ) + 53 ( 1 + 53 ) + .... + 52003 ( 1 + 53 )

                = 5 ( 1 + 125 ) + 52 ( 1 + 125 ) + 53 ( 1 + 125 ) + .... + 52003 ( 1 + 125 )

                = 5.126 + 52 . 126 + 53.126 + ..... + 52003 . 126

                = 126 ( 5 + 52 + 53 + .... + 52003 ) ⋮ 126

=> A ⋮ 126 ( đpcm )

Bình luận (0)
VL
Xem chi tiết
LP
29 tháng 7 2016 lúc 15:24

\(S=5+5^2+5^3+5^4+...+5^{2006}\) 

\(5S=5^2+5^3+5^4+5^5+...+5^{2007}\)

\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{2007}\right)-\left(5+5^2+5^3+5^4+...+5^{2006}\right)\)

\(4S=5^{2017}-5\)

\(S=\frac{5^{2017}-5}{4}\)

Bình luận (0)
OP
29 tháng 7 2016 lúc 15:37

\(S=5+5^2+5^3+5^4+....+5^{2006}\)

\(\Rightarrow5S=5\left(5+5^2+5^3+5^4+.....+5^{2006}\right)\)

\(\Rightarrow5S-S=\left(5^2+5^3+....+5^{2007}\right)-\left(5+5^2+5^3+....+5^{2006}\right)\)

\(\Rightarrow4S=5^{2007}-3\)

\(\Rightarrow S=\frac{5^{2007}-3}{4}\)

Bình luận (0)
DH
Xem chi tiết
H24
22 tháng 3 2019 lúc 20:21

Vì S có 2006 số hạng nên ta chia S thành 334 nhóm mỗi nhóm có 6 số hạng và còn thừa 2 số hạng như sau:

S=5+52+[(53+56)+(54+57)+(55+58)]+.......+[(52001+52004)+(52002+52005)+(52003+52006)]=30+[53(1+125)+54(1+125)+55(1+125)]+.....+[52001(1+125)+52002(1+125)+52003(1+125)]=30+53.126+54.126+55.126+....+52001.126+52002.126+52003.126

=30+126(53+54+55+......+52001+52002+52003)=>S chia 126 dư 30

=> S không chia hết cho 126 (đpcm)

Bình luận (1)
LL
Xem chi tiết
NB
4 tháng 4 2017 lúc 21:08

a) \(5S=5^2+5^3+5^4+...+5^{2006}+5^{2007}\)

    \(5S-S=\left(5^2+5^3+...+5^{2007}\right)-\left(5+5^2+5^3+...+5^{2006}\right)\)

    \(4S=\left(5^{2007}-5\right)\)

     \(S=\frac{\left(5^{2007}-5\right)}{4}\)

b)\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)

\(S=5.\left(1+5^3\right)+5^2.\left(1+5^3\right)+...+5^{2003}.\left(1+5^3\right)\)

\(S=5.126+5^2.126+...+5^{2003}.126\)

\(S=126.\left(5+5^2+...+5^{2003}\right)\)

\(126.\left(5+562+...+5^{2003}\right)\)chia hết cho 126

nên \(S\)chia hết cho 126

Bình luận (0)
HQ
25 tháng 3 2018 lúc 20:19

nhóm 2 số lại 1 cặp

Bình luận (0)
NP
2 tháng 9 2018 lúc 10:11

S=5+ 5^2 +5^3 +5^4 +...+5^2006      (1)

5S= 5. (5 + 5^2 + 5^3 +5^4 +...+ 5^2006)         (2)

5S= 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^2007

Lấy (2) - (1) vế theo vế

5S-S= (5^2 + 5^3 + 5^4 + 5^5 +...+ 5^2007) - (5 + 5^2 + 5^3 + 5^4 +...+ 5^2006)

5S-S= 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^2007 - 5 - 5^2 - 5^3 - 5^4 - ... - 5^2006

4S= 5^2007 - 5

S= ( 5^2007 - 5) :4

Bình luận (0)