\(5\left(x-2y\right)^3:\left(5x-10y\right)\)
Aj nhanh nhất mk tjck cko!!!^_^
\(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
Nhanh nhất mk tjck cho!^_^
đk: a khác b.
\(=\frac{\left(a-b\right)^2\left(5\left(a-b\right)+2\right)}{\left(a-b\right)^2}=5a-5b+2\)
Theo mk là vầy các pn xem dc k nka!
\(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
\(=\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(a-b\right)^2\)
\(=5\left(a-b\right)+2\)
Thực hiện phép tính:
a) \(\dfrac{2}{5}xy\left(x^2y-5x+10y\right)\)
b) \(\left(x^2-1\right)\left(x^2+2x+y\right)\)
c) \(\left(x+3y\right)^2\)
d) \(\left(4x-y\right)^3\)
e) \(\left(x^2-2y\right)\left(x^2+2y\right)\)
g) \(18x^4y^2z:10x^4y\)
h) \(\left(x^3y^3+\dfrac{1}{2}x^2y^3-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
i) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
k) \(\dfrac{5x-1}{3x^2y}+\dfrac{x+1}{3x^2y}\)
l) \(\dfrac{3x+1}{x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
m) \(\dfrac{2x+3}{10x-4}+\dfrac{5-3x}{4-10x}\)
n) \(\dfrac{x}{x^2+2x+1}+\dfrac{3}{5x^2-5}\)
o) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
p) \(\dfrac{4x+2}{15x^3y}\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
q) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)
r) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
x) \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)\)
y) \(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
z) \(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
t) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
w) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
c: \(=x^2+6xy+9y^2\)
e: \(=x^4-4y^2\)
a)\(\left(\dfrac{5}{7}x^2y\right)^3:\left(\dfrac{1}{7}xy\right)^3\)
b) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
c) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
d) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
a)\((\dfrac{5}{7}x^2y)^3:(\dfrac{1}{7}xy)^3\)
=\((\dfrac{5}{7}x^2y:\dfrac{1}{7}:x:y)^3\)
=(\(\dfrac{5}{7}.7.x^2:x.y:y)^3\)
=(5x)\(^3\)
=5\(^3\).x\(^3\)
=125.x\(^3\)
Làm tính chia :
a) \(\left[5\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
b) \(5\left(x-2y\right)^3:\left(5x-10y\right)\)
c) \(\left(x^3+8y^3\right):\left(x+2y\right)\)
a)\([\)5(a-b)\(^3\)+2(a-b)\(^2]\):(b-a)\(^2\)
=\([\)5(a-b)\(^3\)+2(a-b)\(^2]\):(a-b)\(^2\)
=5(a-b)+2
b)5(x-2y)\(^3\):(5x-10y)
=5(x-2y)\(^3\):5(x-2y)
=(x-2y)\(^2\)
c)(x\(^3\)+8y\(^3\)):(x+2y)
=\([\)x\(^3\)+(2y)\(^3]\):(x+2y)
=(x+2y)(x\(^2\)-2xy+4y\(^2\)):(x+2y)
=x\(^2\)-2xy+4y\(^2\)
Tính:
\(\left[\left(a-b\right)^3+2\left(a-b\right)^2\right]:\left(b-a\right)^2\)
Ai nhanh nhất mk tjck cho nhá!
đk: a khác b
\(=\frac{\left(a-b\right)^2\cdot\left(a-b+2\right)}{\left(a-b\right)^2}=a-b+2\).
Làm tính chia: A)\(5\left(x-2y\right)^3:\left(5x-10y\right)\)
B)\(\left(x^3+8y^3\right):\left(x+2y\right)\)
Giải hệ pt
\(\left\{{}\begin{matrix}3\sqrt{2x+y}+\sqrt{x-2y+1}=5\\2\sqrt{x-2y+1}-5x=10y+9\end{matrix}\right.\)
\(\begin{aligned} &\text { Điêu kiện }\left\{\begin{array}{l} 2 x+y \geq 0 \\ x-2 y+1 \geq 0 \end{array}\right.\\ &\text { Ta có hệ phương trình dã cho } \Leftrightarrow\left\{\begin{array}{l} 3 \sqrt{2 x+y}+\sqrt{x-2 y+1}=5 \\ 2 \sqrt{x-2 y+1}-(5 x+10 y)=9 \end{array}\right.\\ &\text { Đặt } u=\sqrt{2 x+y},(\mathrm{u} \geq 0) \text { và } v=\sqrt{x-2 y+1},(v \geq 0)\\ &\text { Suy ra }\left\{\begin{array}{l} 2 x+y=u^{2} \\ x-2 y+1=v^{2} \end{array} \Rightarrow\left\{\begin{array}{l} 2 x+y=u^{2} \\ x-2 y=v^{2}-1 \end{array}\right.\right.\\ &\text { Ta có } 5 x+10 y=m(2 x+y)+n(x-2 y), \text { suy ra }\left\{\begin{array}{l} 2 m+n=5 \\ m-2 n=10 \end{array} \Rightarrow\left\{\begin{array}{l} m=4 \\ n=-3 \end{array}\right.\right.\\ &\text { Vậy } 5 x+10 y=4(2 x+y)-3(x-2 y)=4 u^{2}-3\left(v^{2}-1\right) \end{aligned}\)
\(\text{Vậy ta có hệ phương trình}: \begin{array}{*{20}{l}} {\left\{ {\begin{array}{*{20}{l}} {3u + v = 5}\\ {2v - \left( {4{u^2} - 3{v^2} + 3} \right) = 9} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {v = 5 - 3u}\\ {4{u^2} - 3{v^2} - 2v + 12 = 0} \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}} {v = 5 - 3u}\\ {23{u^2} - 96u + 73 = 0} \end{array}} \right. \Leftrightarrow \left[ \begin{array}{l} \left\{ \begin{array}{l} u = 1\\ v = 2 \end{array} \right.\\ \left\{ \begin{array}{l} u = \dfrac{{73}}{{23}}\\ v = - \dfrac{{104}}{{23}} \end{array} \right. \end{array} \right.} \end{array}\)
\(\text{Trường hợp 1}: \left\{\begin{array}{l}u=1 \\ v=2\end{array} \Rightarrow\left\{\begin{array}{l}2 x+y=1 \\ x-2 y=3\end{array} \Leftrightarrow\left\{\begin{array}{l}x=1 \\ y=-1\end{array}\right. (tm) \right.\right.\\ \text{Trường hợp 2}: \left\{\begin{array}{l}u=\dfrac{73}{23} \\ v=-\dfrac{104}{23}\end{array}\right. (ktm \left.v \geq 0\right)\\ \text{Vậy hệ phương trình đã cho có nghiệm} \left\{\begin{array}{l}x=1 \\ y=-1\end{array}\right..\)
Tính:
\(\left(4x^2+x^2y-5y^3\right)-\left(\frac{5}{3}x^3-6xy^2-x^2y\right)+\left(\frac{x}{3}^3+10y^3\right)+\left(6y^3-15xy^2-4x^2y-10x^3\right)\)
Chứng minh các biểu thức sau không âm với mọi x,y:
1)\(\left(15x-1\right)^2+3\left(7x+3\right)\left(x+1\right)-\left(x^2-73\right)\)
2)\(5x^2+10y^2-6xy-4x-2y+9\)
3)\(5x^2+y^2-4xy-2y+8x+2013\)
3) 5x2 + y2 -4xy - 2y + 8x + 2013
= ( 4x2 + y2 -4xy -2y + 8x ) + x2 + 2013
= ( 2x - y +1)2 + x2 +2013
Vì ( 2x-y+1)2 \(\ge\)0 \(\forall x,y\); x2 \(\ge\)0\(\forall x\)
=> (2x - y+1)2 + x2 \(\ge\)0
=> ( 2x-y +1)2 +x2 + 2013\(\ge\)0
hay A \(\ge0\)\(\forall x,y\)=> A ko âm
Giúp mk phần 1 và phần 2 vs!!!
HELP ME PLEASE!!!
1\(\left(15x-1\right)^2+3\left(7x+3\right)\left(x+1\right)-\left(x^2-73\right)\))
\(=\left(15x-1\right)^2+21x^2+30x+9-x^2+73\)
\(=\left(15x-1\right)^2+20x^2+30x+82\)
\(=\left(15-1\right)^2+20\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{283}{4}\)
\(=\left(15x-1\right)^2+20\left(x+\frac{3}{4}\right)^2+\frac{283}{4}\)
Vì \(\left(15x-1\right)^2;20\left(x+\frac{3}{4}\right)^2;\frac{283}{4}\ge0\forall x\)=> Biểu thức ko âm