Cho x+2y=5. Tinh
B=x2+ 4y2 -2x +10 +4xy -4y
Cho x+2y=5. Tính:
B=x^2+4y^2-2x+10+4xy-4y
\(B=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
D=x^2+4y^2-2x+10+4xy-4y tại x+2y=5
\(D=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x^2+4y^2+4xy\right)-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay \(x+2y=5;\)có :
\(D=5^2-2.5+10\)
\(=25-10+10\)
\(=25\)
Vậy...
Cho x + 2y = 5. Tính giá trị của biểu thức:
C= x^2 + 4y^2 - 2x + 10 + 4xy - 4y
Ta có
\(C=\left(x^2+2.x.2y+\left(2y\right)^2\right)-\left(2x+4y\right)+10\)
\(\Rightarrow C=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(\Rightarrow C=5^2-2.5+10\)
\(\Rightarrow C=25-10+10=25\)
\(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left[x^2+2.x.2y+\left(2y\right)^2\right]-\left(2x+4y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2\right)+10\)
\(=5^2-2.5+10\)
\(=5^2-10+10\)
\(=25-10+10\)
\(=25\)
CHÚC BẠN HỌC TỐT !!!
cho x+2y=5 B=x^2+4y -2x+10+4xy-4
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Biết x+2y=5. Tính B=x2+4y2-2x+10+4xy-4y
Câu 9:
Cho x + 2y = 5. Khi đó giá trị của biểu thức x^2+4y^2-2x+10+4xy-4y bằng
cho x+2y=5 . Tính giá trị của biểu thức
A= x^2+4y^2-2x+10+4xy-4y
A=(x^2+4xy+4y^2)-(2x+4y)+10
A=(x+2y)^2-2(x+2y)+1+9
A=(x+2y-1)^2+9
A=(5-1)^2+9=16+9=25
A=(x^2+4xy+4y^2)-(2x+4y)+10
A=(x+2y)^2-2(x+2y)+1+9
A=(x+2y-1)^2+9
A=(5-1)^2+9=16+9=25
Cho x+y=5 tính giá trị của biểu thức
A=x^3+y^3-2x^2-2y^2+3xy(x+y)-4xy+3(x+y)+10
Chox-y=7 Tính
B=x(x+2)+y(y-2)-2xy+37
Cho x+2y=5 Tính
C=x^2+4y^2-2x+10+4xy-4y
Câu 2:
\(B=x^2+2x+y^2-2x-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2\cdot7+37=49+37+14=100\)
Câu 3:
\(C=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2\cdot5+10=25\)
cho x+2y=5.Tính giá trị của biểu thức:
B=x2+4y2-2x+10+4xy-4y
B=\(x^2+4y^2-2x+10+4xy-4y\)
B=\(x^2+4xy+4y^2-2\left(x+2y\right)+10\)
B=\(\left(x+2y\right)^2-2\left(5\right)+10\)
B=\(5^2-10+10\)
B=25
\(B=x^2+4y^2-2x+10+4xy-4y\)
\(B=x^2+4y^2-2x+2x+4y+4xy\)
\(B=x^2+4y^2+4xy\)
\(B=x^2+2.x.2y+\left(2y\right)^2=\left(x+2y\right)^2\)
\(B=5^2\)
\(B=25\)