\(s=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{2009}+\sqrt{2011}}\)
\(.S=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{2009}+\sqrt{2011}}\)
Tính S
\(=\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+...+\frac{\sqrt{2011}-\sqrt{2009}}{2011-2009}=\frac{\sqrt{2011}-1}{2}\)
Giải pt :\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
giải pt:\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)
Ta có: \(\frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0\)
\(\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow a=b=c=\frac{1}{2}\)
Thay vào tìm x;y;z
Đặt: \(\hept{\begin{cases}\sqrt{x-2009}=a\\\sqrt{y-2010}=b\\\sqrt{z-2011}=c\end{cases}}\)
Ta có: \frac{1}{a}-\frac{1}{a^2}+\frac{1}{b}-\frac{1}{b^2}+\frac{1}{c}-\frac{1}{c^2}-\frac{3}{4}=0a1−a21+b1−b21+c1−c21−43=0
\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{c^2}-\frac{1}{c}+\frac{3}{4}=0⇔a21−a1+b21−b1+c21−c1+43=0
\Leftrightarrow\left(\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}\right)+\left(\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}\right)+\left(\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}\right)=0⇔(a21−a1+41)+(b21−b1+41)+(c21−c1+41)=0
\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0⇔(a1−21)2+(b1−21)2+(c1−21)2=0
\Leftrightarrow a=b=c=\frac{1}{2}⇔a=b=c=21
Thay vào tìm x;y;z
Tính
M=\(\frac{\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{2005.2007.2009}}{\frac{1}{1\sqrt{3}+3\sqrt{1}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{2007\sqrt{2009}+2009\sqrt{2007}}}\)
Xét tử số có dạng : \(\frac{1}{\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)}=\frac{1}{4}\left[\frac{1}{\left(2n+1\right)\left(2n+2\right)}-\frac{1}{\left(2n+2\right)\left(2n+3\right)}\right]\) với \(n\in N\)
Ta có : \(\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{2005.2007.2009}\)
\(=\frac{1}{4}.\left(\frac{1}{1.3}-\frac{1}{3.5}\right)+\frac{1}{4}.\left(\frac{1}{3.5}-\frac{1}{5.7}\right)+\frac{1}{4}\left(\frac{1}{5.7}-\frac{1}{7.9}\right)+...+\frac{1}{4}\left(\frac{1}{2005.2007}-\frac{1}{2007.2009}\right)\)
\(=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{2005.2007}-\frac{1}{2007.2009}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{2007.2009}\right)\)
Xét mẫu số có dạng : \(\frac{1}{\left(2n+1\right)\sqrt{2n+3}+\left(2n+3\right)\sqrt{2n+1}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}=\frac{1}{2}.\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\in N\)
Áp dụng : \(\frac{1}{1\sqrt{3}+3\sqrt{1}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{2007\sqrt{2009}+2009\sqrt{2007}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{2007}}-\frac{1}{\sqrt{2009}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{2009}}\right)\)
Suy ra : \(M=\frac{\frac{1}{4}\left(\frac{1}{3}-\frac{1}{2007.2009}\right)}{\frac{1}{2}\left(1-\frac{1}{\sqrt{2009}}\right)}\)
Tới đây bài toán đã gọn hơn , bạn tự tính nhé :)
Giải phương trình: \(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Thưa bn mk đã làm ra nhưng không biết có đúng không. Xem nhá:
Ta có:
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2001}-1}{y-2001}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\Leftrightarrow"\frac{1}{\sqrt{x-2009}}-\frac{1}{2}"^2+\)
\("\frac{1}{\sqrt{y-2010}}-\frac{1}{2}"^2-"\frac{1}{\sqrt{z-2011}}-\frac{1}{2}"^2=0\)
\(\Rightarrow x=2013;y=2014;z=2015\)
P/s: Bn thay Ngoặc Kép thành Ngoặc Đơn nhé
Giải phương trình :
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Giải phương trình:
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{x-2011}=\frac{3}{4}\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x=2013;y=2014;z=2015\)
Giải phương trình: \(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
\(ĐKXĐ:x\ne2009;y\ne2010;z\ne2011;x,y,z\in R\)
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{x-2009}-\frac{\sqrt{x-2009}}{x-2009}+\frac{1}{y-2010}-\frac{\sqrt{y-2011}}{y-2011}+\frac{1}{z-2011}-\frac{\sqrt{z-2011}}{z-2011}=\frac{-3}{4}\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}^2}-\frac{1}{\sqrt{x-2009}}+\frac{1}{4}\right)+\left(\frac{1}{\sqrt{y-2010}^2}-\frac{1}{\sqrt{y-2010}}+\frac{1}{4}\right)+\left(\frac{1}{\sqrt{z-2011}^2}+\frac{1}{\sqrt{z-2011}}+\frac{1}{4}\right)=0\)\(\Leftrightarrow\left(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}\right)^{^2}+\left(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}\right)^2+\left(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}\right)^2=0\)
\(\frac{1}{\sqrt{x-2009}}-\frac{1}{2}=0\)\(\frac{1}{\sqrt{y-2010}}-\frac{1}{2}=0\)\(\frac{1}{\sqrt{z-2011}}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{1}{\sqrt{x-2009}}=\frac{1}{2};\frac{1}{\sqrt{y-2010}}=\frac{1}{2};\frac{1}{\sqrt{z-2011}}=\frac{1}{2}\)
\(\Leftrightarrow x=2013;y=2014;z=2015\inĐKXĐ\)
VẬY \(x=2013;y=2014;z=2015\)
giải pt
\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Đặt \(a=\sqrt{x-2009};b=\sqrt{y-2010};c=\sqrt{z-2011};a>0;b>0;c>0\)
\(Pt\Leftrightarrow\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{\left(4a^2-a+1\right)}{a^2}+\frac{\left(4b^2-b+1\right)}{b^2}+\frac{\left(4c^2-c+1\right)}{c^2}=0\)
\(\Leftrightarrow\left(\frac{2a-1}{a}\right)^2+\left(\frac{2b-1}{b}\right)^2+\left(\frac{2c-1}{c}\right)^2=0\)
\(\Rightarrow a=b=c=\frac{1}{2}\Rightarrow\sqrt{x-2009}=\frac{1}{2}\Rightarrow x=2009\frac{1}{4}\)
\(\Rightarrow b=\frac{1}{2}\Rightarrow\sqrt{y-2010}=\frac{1}{2}\Rightarrow y=2010\frac{1}{4}\)
\(\Rightarrow c=\frac{1}{2}\Rightarrow\sqrt{z-2011}=\frac{1}{2}\Rightarrow z=2011\frac{1}{4}\)