Những câu hỏi liên quan
DV
Xem chi tiết
NG
14 tháng 6 2020 lúc 15:40

\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80} \)

\(=\frac{1}{3}.(\frac{1}{20}-\frac{1}{23})+\frac{1}{3}.(\frac{1}{23}-\frac{1}{26})+...+\frac{1}{3}.(\frac{1}{77}-\frac{1}{80})\)

=\(\frac{1}{3}.(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80})\)

=\(\frac{1}{3}.(\frac{1}{20}-\frac{1}{80})\)

=\(\frac{1}{3}.\frac{3}{80}\)

=\(\frac{1}{80}\)<\(\frac{1}{9}\)

Vậy tổng trên nhỏ hơn \(\frac{1}{9}\)

Bình luận (2)
PT
Xem chi tiết
NM
22 tháng 6 2020 lúc 14:30

Đặt vế trái là B

\(3B=\frac{23-20}{20.23}+\frac{26-23}{23.26}+\frac{29-26}{26.29}+...+\frac{80-77}{77.80}\)

\(3B=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}=\frac{1}{20}-\frac{1}{80}\)

\(3B=\frac{3}{80}\Rightarrow B=\frac{1}{80}< \frac{1}{9}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
22 tháng 6 2020 lúc 15:04

Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)

\(=\frac{1}{3}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)

Vậy \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}< \frac{1}{9}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
3 tháng 5 2024 lúc 21:11

:3 B<1/79 mà 1/79<1/9=>B<1/9

Bình luận (0)
DT
Xem chi tiết
DN
1 tháng 5 2017 lúc 15:56

\(\dfrac{3^2}{20.23}\)+\(\dfrac{3^2}{23.26}\)+...+\(\dfrac{3^2}{77.80}\)

=> \(\dfrac{9}{20.23}+...+\dfrac{9}{77.80}\)

= 9.\(\left(\dfrac{1}{20.23}+...+\dfrac{1}{77.80}\right)\)

\(=9.\left(\dfrac{1}{20.3}-\dfrac{1}{23.3}+\dfrac{1}{23.3}-\dfrac{1}{26.3}+...+\dfrac{1}{77.3}-\dfrac{1}{80.3}\right)\)= \(9.\left(\dfrac{1}{20.3}-\dfrac{1}{80.3}\right)\)

\(=9.\dfrac{1}{80}\)=\(\dfrac{9}{80}=0,1125< 1.\)


Bình luận (1)
NH
Xem chi tiết
ME
Xem chi tiết
TN
Xem chi tiết
NT
6 tháng 5 2019 lúc 22:53

Đặt A=\(\frac{1}{20.23}+\frac{1}{23.26}+....+\frac{1}{77.80}\)

=>A=\(\frac{1}{3}\).(\(\frac{3}{20.23}+\frac{3}{23.26}+....+\frac{3}{77.80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{80}\))

=>A=\(\frac{1}{3}.\frac{3}{80}\)

=>A=\(\frac{1}{80}\)

Do \(\frac{1}{80}\)<\(\frac{1}{9}\)

Nên \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+....+\frac{1}{77.80}< \frac{1}{9}\)

Bình luận (1)
TN
6 tháng 5 2019 lúc 22:50

ko bt

Bình luận (0)
TN
6 tháng 5 2019 lúc 22:50

giúp mik nha đng cần gấp

Bình luận (0)
TN
Xem chi tiết
LC
6 tháng 5 2019 lúc 23:01

\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\)

\(=\frac{1}{80}< \frac{1}{9}\)

Bình luận (0)
EC
6 tháng 5 2019 lúc 23:02

Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)

\(\frac{1}{3.}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+....+\frac{1}{77}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)

Bình luận (0)
DP
Xem chi tiết
KF
12 tháng 5 2015 lúc 9:38

=\(3\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=3\left(\frac{4}{80}-\frac{1}{80}\right)\)

\(=3.\frac{3}{80}\)

\(=\frac{9}{80}\)

Bình luận (0)
KT
12 tháng 5 2015 lúc 9:39

Katherine Lilly Filbert đúng rồi

Bình luận (0)
NH
9 tháng 3 2024 lúc 15:50

1/3=3/20*23+3/23*26+...+3/77+80

1/3=1/20-1/23+1/23-1/26+...+1/77-1/80

1/3=1/20-1/80

1/3=3/80

-> 3/3=3/80*3

->9/80

Vì 9/80<1 nên: => 3^2/20*23+3^2/23*26+...+3^2/77*80

 

Bình luận (0)
TH
Xem chi tiết
NT
25 tháng 4 2017 lúc 21:53

Đặt A= ...(như trên)

=>\(\dfrac{1}{3}A=\dfrac{1}{3}.\left(\dfrac{3^2}{20.23}+\dfrac{3^2}{23.26}+...+\dfrac{3^2}{77.80}\right)\)

=>\(\dfrac{1}{3}A=\dfrac{3}{20.23}+\dfrac{3}{23.26}+...+\dfrac{3}{77.80}\)

=>\(\dfrac{1}{3}A=\dfrac{1}{20}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{26}+...+\dfrac{1}{77}-\dfrac{1}{80}\\ \)

=>\(\dfrac{1}{3}A=\dfrac{1}{20}-\dfrac{1}{80}\\ =>\dfrac{1}{3}A=\dfrac{4}{80}-\dfrac{1}{80}\\ =>\dfrac{1}{3}A=\dfrac{3}{80}=>A=\dfrac{3}{80}:\dfrac{1}{3}\\ =>A=\dfrac{3}{80}.3=\dfrac{9}{80}< 1\)

Vậy A<1 . Chúc bạn học tốt ! :)

Bình luận (0)