Những câu hỏi liên quan
TD
Xem chi tiết
TD
Xem chi tiết
TD
Xem chi tiết
HN
30 tháng 7 2016 lúc 16:30

Ta có : \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)được :\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bđt \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)được : \(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}\ge6\)

Suy ra \(P\ge10\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy Min P = 10 khi x = y = 1/2

Bình luận (0)
VK
20 tháng 7 2017 lúc 9:35

Suy ra P≥10

Dấu "=" xảy ra khi và chỉ khi {

x+y=1
x=y

⇔x=y=12 

Vậy Min P = 10 khi x = y = 1/2

Bình luận (0)
LH
Xem chi tiết
LH
Xem chi tiết
PP
Xem chi tiết
BD
12 tháng 5 2017 lúc 17:32

A=4 

tk đi mình gửi kq cho

Bình luận (0)
AN
12 tháng 5 2017 lúc 19:36

Ta có:

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Rightarrow A=xy\ge4\) 

Dấu = xảy ra khi x = y = 2 

Bình luận (0)
BV
Xem chi tiết
YN
5 tháng 1 2021 lúc 23:17
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
DN
22 tháng 9 2018 lúc 20:33

Ta có:

\(P=\frac{18}{x^2+y^2}+\frac{9}{xy}+\frac{4}{xy}=\frac{18}{x^2+y^2}+\frac{18}{2xy}+\frac{4}{xy}\)

\(=18.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{4}{xy}\ge18.\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{4}{\frac{\left(x+y\right)^2}{4}}\)

\(=18.4+4.4=72+16=88\)

Dấu bằng xảy ra: \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
DC
Xem chi tiết