Cho \(\frac{a}{b}=\frac{c}{d}.CMR:\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(\frac{a}{b}=\frac{c}{d}\). CMR:
a) \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
b) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a) áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)
Do \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)=> đpcm
b) áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\left(\frac{a-c}{b-d}\right)^2\)=> đpcm
Cho \(\frac{a}{b}=\frac{c}{d}\). CMR: \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Ta có : \(\frac{a}{b}=\frac{c}{d}=\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a+b}{c+d}.\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\Rightarrow\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
cho 4 số thực a,b,c,d tm a+b+c+d=4
cmr \(\frac{\left(a+\sqrt{b}\right)^2}{\sqrt{a^2-ab+b^2}}+\frac{\left(b+\sqrt{c}\right)^2}{\sqrt{b^2-bc+c^2}}+\frac{\left(c+\sqrt{d}\right)^2}{\sqrt{c^2-cd+d^2}}+\frac{\left(d+\sqrt{a}\right)^2}{\sqrt{d^2-ad+a^2}}\le16\)
Cho \(\frac{a}{b}=\frac{c}{d}\), CMR:
a) \(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
b)\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng :\(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)
\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được
Chúc bạn học tốt
Cho \(\frac{a}{b}=\frac{c}{d}\)CMR:
a,\(\frac{2a^2-3b^2}{2c^2-3d^2}=\frac{ab}{cd}\)
b,\(\frac{ab}{cd}=\frac{\left(a-2b\right)^2}{\left(c-2d\right)^2}\)
a) Ta có: \(\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
+)\(\frac{2a^2-3b^2}{2c^2-3d^2}=\frac{2.\left(bk\right)^2-3b^2}{2.\left(dk\right)^2-3d^2}=\frac{2.b^2.k^2-3.b^2}{2.d^2.k^2-3.d^2}\)
\(=\frac{2.b^2.\left(k^2-3\right)}{2.d^2.\left(k^2-3\right)}\)
\(=\frac{b^2}{d^2}\)(1)
+)\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)(2)
Từ (1) và (2), ta có: \(\frac{2a^2-3b^2}{2c^2-3d^2}=\frac{ab}{cd}\)
Học tốt nha!!!
Cho \(a,b,c,d>0\).CMR: \(\frac{\left(a-1\right)\left(c+1\right)}{1+bc+c}+\frac{\left(b-1\right)\left(d+1\right)}{1+cd+d}+\frac{\left(c-1\right)\left(a+1\right)}{1+da+a}+\frac{\left(d-1\right)\left(b+1\right)}{1+ab+b}\ge0\)
1, Cho \(\frac{a}{b}=\frac{c}{d}\)( b,c,d khác 0; c+đ khác 0). CMR:
\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+\text{d}\right)^2}\)
a/b=c/d
=>a/c=b/d=a+b/c+d
=>a/b.c/d=(a+b)^2/(c+d)^2
=>ab/cd=(a+b)^2/(c+d)^2
Vay......
a/b=c/d
=> a/c=b/d=a+b/c+d
=> a/b.c/d=(a+b)^2/(c+d)^2
=> ab/cd=(a+b)^2/(c+d)^2
# Hok_tốt nha
cho tỉ lệ thức sau \(\frac{a}{b}=\frac{c}{d}\):
CMR:
a\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)
b\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)
a) ta có: \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)
\(\frac{c}{d}=k\Rightarrow c=dk\)
thay vào \(\frac{a^2-b^2}{ab}=\frac{\left(bk^2\right)-b^2}{bkb}=\frac{bkbk-bb}{bkb}=\frac{bb\times\left(kk-1\right)}{bbk}=\frac{kk-1}{k}\)
\(\frac{c^2-d^2}{cd}=\frac{\left(dk^2\right)-d^2}{dkd}=\frac{dkdk-dd}{dkd}=\frac{dd\times\left(kk-1\right)}{ddk}=\frac{kk-1}{k}\)
\(\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(=\frac{kk-1}{k}\right)\)
b) ta có \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)
\(\Rightarrow\frac{c}{d}=k\Rightarrow c=dk\)
thay vào \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{bkbk+bb}=\frac{b\left(k+1\right)\times b\left(k+1\right)}{bb\left(kk+1\right)}=\frac{bb\left(k+1\right)\left(k+1\right)}{bb\left(kk+1\right)}=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\)
\(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{dkdk+dd}=\frac{\left(d\left(k+1\right)\right)^2}{dd\left(kk+1\right)}=\frac{d\left(k+1\right)\times d\left(k+1\right)}{dd\left(kk+1\right)}=\frac{dd\left(k+1\right)\left(k+1\right)}{dd\left(kk+1\right)}=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\)
\(\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\left(=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\right)\)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Câu a:
\(\frac{a^2-b^2}{ab}=\frac{a^2}{ab}-\frac{b^2}{ab}=\frac{a}{b}-\frac{b}{a}=\frac{c}{d}-\frac{d}{c}=\frac{c^2-d^2}{cd}\)(Đpcm)