Những câu hỏi liên quan
NN
Xem chi tiết
DV
10 tháng 3 2016 lúc 10:24

\(E=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+...+\left(1-\frac{1}{9999}\right)\)

    \(=\left(1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{15}+...+\frac{1}{9999}\right)\)

     \(=50-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

     \(=50-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

     \(=50-\frac{1}{2}.\left(1-\frac{1}{101}\right)=50-\frac{1}{2}.\frac{100}{101}=50-\frac{50}{101}=\frac{5000}{101}\)

Bình luận (1)
NN
Xem chi tiết
DP
12 tháng 7 2017 lúc 11:50

\(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}\)

\(=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+...+\left(1-\frac{1}{9999}\right)\)

\(=\left(1-\frac{1}{1\cdot3}\right)+\left(1-\frac{1}{3\cdot5}\right)+\left(1-\frac{1}{5\cdot7}\right)+\left(1-\frac{1}{7\cdot9}\right)+...+\left(1-\frac{1}{99\cdot101}\right)\)

\(=\left(1+1+1+1+...+1\right)-\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

Có tất cả : (101 - 3) : 2 + 1 = 50 chữ số 1 => (1 + 1 + 1 + .... + 1) = 1 x 50 = 50 

\(\Rightarrow50-\frac{1}{2}\cdot\left(1-\frac{1}{101}\right)\)

\(=50-\frac{1}{2}\cdot\frac{100}{101}=50-\frac{100}{101}=\frac{4950}{101}\)

Vậy \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+...+\frac{9998}{9999}=\frac{4950}{101}\)

Bình luận (0)
HB
Xem chi tiết
HN
Xem chi tiết
TL
3 tháng 5 2015 lúc 16:24

\(M=1-\frac{1}{3}+1-\frac{1}{15}+1-\frac{1}{35}+1-\frac{1}{63}+...+1-\frac{1}{9999}\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)

\(M=\left(1+1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\right)\)(Có (99 - 1): 2+ 1 = 50 số 1)

\(M=50-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)

\(M=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(M=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{5050-100}{101}=\frac{4950}{101}\)

Bình luận (0)
KK
3 tháng 7 2018 lúc 16:06

2

Đâu rồi

Bình luận (0)
CN
Xem chi tiết
H24
25 tháng 7 2017 lúc 8:54

bạn ơi tách ra thừa số chung rồi làm như bình thường nha 

Bình luận (0)
H24
9 tháng 4 2018 lúc 22:27

1, A=\(\left(1+1+1+1\right)\)-\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)\)

     =4-\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)\)

     = 4-\(\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)\)

    =4-\(\left(1-\frac{1}{9}\right)\)

     = 4-\(\frac{8}{9}\)

      = \(\frac{7}{9}\)

Bình luận (0)
H24
9 tháng 4 2018 lúc 22:33

Câu 2 tương tự như câu 1 

A=\(\left(1+1+1+1\right)\)-\(\left(\frac{1}{10}+\frac{1}{40}+...+\frac{1}{154}\right)\)

A= 4                    -\(\left(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{11.14}\right)\)

Bạn tự làm tiếp 

Bình luận (0)
TT
Xem chi tiết
NH
Xem chi tiết
MV
3 tháng 8 2017 lúc 9:03

\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+...+\dfrac{9998}{9999}\\ =\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{9999}\right)\\ =\left(1+1+1+...+1\right)\left(\text{có 50 số 1}\right)-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\right)\\ =50\cdot1-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\right)\\ =50-\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =50-\left(1-\dfrac{1}{101}\right)\\ =50-1+\dfrac{1}{101}\\ =49+\dfrac{1}{101}\\ =\dfrac{4949+1}{101}\\ =\dfrac{4950}{101}\)

Bình luận (0)
NH
Xem chi tiết
H24
8 tháng 8 2018 lúc 15:20

Đặt A = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{9998}{9999}.\frac{10000}{10000}\)

Rõ ràng A < A'

=> A2 < A . A' \(=\frac{1}{10000}=\frac{1}{100^2}\)

Nên A < 0,01

Bình luận (0)
PT
Xem chi tiết
MP
2 tháng 7 2020 lúc 21:38

\(A=\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+\frac{62}{63}+\frac{98}{99}+\frac{142}{143}\)

\(=\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+\left(1-\frac{1}{35}\right)+\left(1-\frac{1}{63}\right)+\left(1-\frac{1}{99}\right)+\left(1-\frac{1}{143}\right)\)

\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)

\(=6-\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\right)\)

\(=6-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=6-\left(1-\frac{1}{13}\right)\)

\(=6-1+\frac{1}{13}\)

\(=5+\frac{1}{13}\)

\(=\frac{66}{13}\)

Bình luận (0)
MP
2 tháng 7 2020 lúc 21:58

Mk sửa lại 1 tí nha dòng thứ 5 :

\(A=6-\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)

\(=6-\frac{1}{2}\left(1-\frac{1}{13}\right)\)

\(=6-\frac{1}{2}.\frac{12}{13}\)

\(=6-\frac{6}{13}=\frac{72}{13}\)

Mong bn bỏ qua nha

Bình luận (0)