Những câu hỏi liên quan
VH
Xem chi tiết
TL
Xem chi tiết
DN
26 tháng 3 2022 lúc 15:57

c)Gọi I là giao điểm của BM và AC.

Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)

Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB

⇒MC+MB<MI+MB+IC

⇒MC+MB<IB+IC (2)

d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)

Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC

⇒ IB+IC<IA+IC+AB

⇒IB+IC<AC+AB (4)

e)Từ (2) và (4) suy ra MB+MC<AB+AC

f)Áp dụng bđt tam giác, ta có:

AB+AI > BI = MB+MI, CI + MI > MC

=> AB + AI + CI + MI > MB + MI + MC

Mà AI + CI = AC

=> AB + AC > MB + MC [1]

Áp dụng bđt tam giác, ta cũng có:

BA + BC > MA + MC [2],

CA + CB > MA + MB [3]

Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC

=> MA + MB + MC < AB + AC + BC (đpcm)

 

Bình luận (0)
DN
26 tháng 3 2022 lúc 15:59

a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)

b)

*Xét ΔABM ta có: AM + BM > AB (1)

*Xét ΔACM ta có: AM + CM > AC (2)

*Xét ΔBMC ta có: BM + CM > BC (3)

Từ (1); (2); (3)

=> AM + BM + AM + CM + BM + CM > AB + AC + BC

=> 2. AM + 2. BM + 2. CM > AB + AC + BC

=> 2. (AM + BM + CM) > AB + AC + BC

Hay: 2. (MA + MB + MC) > AB + BC + CA

Bình luận (0)
TL
Xem chi tiết
DN
26 tháng 3 2022 lúc 15:58

a) Xét ΔBMC ta có: MB + MC > BC (bất đẳng thức tam giác)

b)

*Xét ΔABM ta có: AM + BM > AB (1)

*Xét ΔACM ta có: AM + CM > AC (2)

*Xét ΔBMC ta có: BM + CM > BC (3)

Từ (1); (2); (3)

=> AM + BM + AM + CM + BM + CM > AB + AC + BC

=> 2. AM + 2. BM + 2. CM > AB + AC + BC

=> 2. (AM + BM + CM) > AB + AC + BC

Hay: 2. (MA + MB + MC) > AB + BC + CA

c)Gọi I là giao điểm của BM và AC.

Áp dụng bất đẳng thức tam giác vào ΔIMC ta có: MC<MI+IC (1)

Cộng MB vào hai vế (1) ta được: MC+MB<MI+IC+MB

⇒MC+MB<MI+MB+IC

⇒MC+MB<IB+IC (2)

d)Áp dụng bất đẳng thức tam giác vào ΔIBA ta có: IB<IA+AB (3)

Cộng IC vào hai vế (3) ta được: IB+IC<IA+AB+IC

⇒ IB+IC<IA+IC+AB

⇒IB+IC<AC+AB (4)

e)Từ (2) và (4) suy ra MB+MC<AB+AC

f)Áp dụng bđt tam giác, ta có:

AB+AI > BI = MB+MI, CI + MI > MC

=> AB + AI + CI + MI > MB + MI + MC

Mà AI + CI = AC

=> AB + AC > MB + MC [1]

Áp dụng bđt tam giác, ta cũng có:

BA + BC > MA + MC [2],

CA + CB > MA + MB [3]

Từ [1][2][3] => 2 (AB+AC+CA) > MA + MB + MC

=> MA + MB + MC < AB + AC + BC (đpcm)

 

Bình luận (0)
CM
Xem chi tiết
KS
6 tháng 4 2022 lúc 16:22

ko nhìn thấy 

Bình luận (1)
KS
6 tháng 4 2022 lúc 16:23

refer

 

 

Bình luận (0)
LN
19 tháng 6 2024 lúc 21:44

bị bôi đen rồi bn ạ

 

Bình luận (0)
TP
Xem chi tiết
TH
Xem chi tiết
PB
Xem chi tiết
CT
19 tháng 8 2017 lúc 15:44

Bình luận (0)
MM
Xem chi tiết
HH
14 tháng 4 2020 lúc 18:56

Không làm mà đòi có ăn thì  ............................................

Bình luận (0)
 Khách vãng lai đã xóa
VP
14 tháng 4 2020 lúc 19:05

Nguôi ta de len day de giúp chu ko de cho may Súa nhe con .......

Bình luận (0)
 Khách vãng lai đã xóa
ND
14 tháng 4 2020 lúc 19:06

ai giúp mình với
cùng câu hỏi

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết