So sánh\(\frac{2^{23}+1}{2^{25}+1}\) và \(\frac{2^{25}+1}{2^{27}+1}\)
So sánh 2 phân số sau:
\(\frac{2^{23}+1}{2^{25}+1}va\frac{2^{25}+1}{2^{27}+1}\)
Vì \(2^{25}+1< 2^{27}+1\) nên \(\frac{2^{25}+1}{2^{27}+1}< 1\)
\(\Rightarrow\frac{2^{25}+1}{2^{27}+1}< \frac{2^{25}+1+3}{2^{27}+1+3}=\frac{2^{25}+4}{2^{27}+4}=\frac{2^2\left(2^{23}+1\right)}{2^2\left(2^{25}+1\right)}=\frac{2^{23}+1}{2^{25}+1}\)
Vậy \(\frac{2^{25}+1}{2^{27}+1}< \frac{2^{23}+1}{2^{25}+1}\)
so sánh
a, \(\frac{2^{23^{ }}+1}{2^{25^{ }}+1}\)và \(\frac{2^{25^{ }}+1}{2^{27^{ }}+1}\)
b, 223+1 và 227+1
Bài 1:Cho 4 số dương a, b, c, d biết rằng: b=\(\sqrt{\frac{a+c}{2}}\) và c=\(\sqrt{\frac{2bd}{b+d}}\)
Bài 2: So sánh:
a) 128 . 912 và 186 b) 7520 và 4510 . 530
c) \(\sqrt{37}\) - \(\sqrt{14}\) và 6 - \(\sqrt{15}\) d) \(\sqrt{\frac{2^{23^{ }}+1}{2^{25^{ }}+1}}\) và \(\sqrt{\frac{2^{25^{ }}+1}{2^{27^{ }}+1}}\)
Các bạn giúp mình với ạ. Cảm ơn nhiều!
so sánh
x=\(\frac{2^{23}+1}{2^{25}+1}\)và y=\(\frac{2^{25}+1}{2^{27}+1}\)
X=2^23+1/2^25+1 = 1/2^2+1 = 1/4+1 = 1/5
Y=2^25+1/2^27+1 = 1/2^2+1 = 1/4+1 =1/ 5
Vì 1/5 = 1/5 nên X=Y
Chúc bạn học tốt
Giúp tớ bài này nhé !
SO SÁNH:
\(\frac{2^{23}+1}{2^{25}+1}\)và\(\frac{2^{25}+1}{2^{27}+1}\)
Gọi 223+1/225+1 là A;225+1/227+1 là B
Ta có 22A=225+4/225+1
22A=225+1/225+1 + 3/225+1
22A=1+3/225+1
Có 22B=227+4/227+1
22B=227+1/227+1 + 3/227+1
22B=1+3/227+1
Vì 1+3/225+1>1+3/227+1
nên 22A>22B
nên A>B
Vậy A>B
Cảm ơn Pé's Pơ's nhiều nha
Ta có:\(\frac{a}{b}< \frac{a+c}{b+c}\)
\(\Leftrightarrow\frac{2^{25}+1}{2^{27}+1}< \frac{2^{25}+1+1}{2^{27}+1+1}=\frac{2^{25}+2}{2^{27}+2}=\frac{2^2.\left(2^{23}+1\right)}{2^2.\left(2^{25}+1\right)}=\frac{2^{23}+1}{2^{25}+1}\)
\(\Rightarrow\frac{2^{23}+1}{2^{25}+1}>\frac{2^{25}+1}{2^{27}+1}\)
Chúc bạn học tốt
So sánh: \(\frac{2^{23}+1}{2^{25}+1}\) và \(\frac{2^{25}+1}{2^{27}+1}\)
s0 sanh
\(\frac{2^{23}+1}{2^{25}+1}\) vs \(\frac{2^{25}+1}{2^{27}+1}\)
\(Chứngtỏrằng:\frac{1}{^22}+\frac{1}{^23}+\frac{1}{^24}+\frac{1}{^25}+\frac{1}{^26}+\frac{1}{^27}+\frac{1}{^28}< 1\)
chứng tỏ rằng 1 phần 2 mũ 2+1 phần ba mũ 2...........
giải luôn; đặt A=1/2^2+1/3^2+...+1/8^2
1/2^2 < 1/1.2
1/3^2<1/2.3
.......
1/8^2<1/7.8
=> 1/2^2 + 1/3^2 +...+1/8^2<1/1.2 + 1/2.3 + ....+ 1/7.8
=>A<1-1/2 + 1/2 - 1/3 + ....+1/7-1/8
=>A<1-1/8<1
vậy 1/2^2+1/3^2+....+1/8^2 <1
like nha
bài 1: So sánh
a,\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2} và 1 \)
b,\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2} và 1\)