Cho B = 3 + 32 + 33 +...+ 32005. CMR 2B+3 là lũy thừa của 3
cho B=3+3^2+3^3+.......+3^2005.CMR 2B+3 là lũy thừa của 3
\(3.B=3^2+3^3+3^4+...+3^{2006}\)
\(2B=3B-B=3^{2006}-3\Rightarrow2B+3=3^{2006}\)
cho A=1+2+2^2+2^3+...+2^200. Hãy viết A+1 dưới dạng một lũy thừa
B=3+3^2+3^3+...+3^2005.CMR:2B+3 là lũy thừa của 3
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
A=1+1+2+2^2+2^3+...+2^200=2=2+2+2^2+2^3+...+2^200=2^2+2^2+2^3+...+2^200
B chia hết cho 3=>2B chia hết cho 3, 3 chia hết cho 3 mà 2B+3 nên 2B+3 chia hết cho 3
Cho B = 3 + 32 + 33 +...+32005. CMR : 2B+3 là lũy thừa của 3.
B = 3 + 32 + 33 +...+ 32005
3B = 32 + 33 + 34 +...+ 32005 + 32006
3B - B = (32 + 33 + ... +32005 + 32006) - ( 3 + 32 + 33 +...+ 32005 )
2B = 32006 - 3
2B+3 = 22006
Vậy 2B+3 là lũy thừa của 3
Cho B= 3 + 32 + 33 +...+ 32005 .CMR: 2B + 3 là lũy thừa của 3
\(B=3+3^2+3^3+...+3^{2005}\)
\(3B=3^2+3^3+...+3^{2005}+3^{2006}\)
\(3B-B=\left(3^2+3^3+...+3^{2005}+3^{2006}\right)-\left(3+3^2+3^3+...+3^{2005}\right)\)
\(2B=3^{2006}-3\)
\(\Rightarrowđpcm\)
Cho : C = 1 -3 + 32 - 33 + ..... +32017 + 32018
CMR : 4C - 1 là 1 lũy thừa của 3.
B = 3 + 3^2 + 3^3 + ... + 3^2005 . khẳng định nào dưới đây đúng
a) 2B là lũy thừa của 3 b) B + 3 là lũy thừa của 3 c) 2B + 3 là lũy thừa của 3 d) B là lũy thừa của 3
1, Cho A = 1+2+2^2 +...+2^200
Viết A+1 dưới dạng lũy thừa
2, Cho B= 3+3^2+3^3 +....+3^2005
CMR : 2B+3 là lũy thừa của 3
1. A = 1 + 2 + 22 + ... + 2200
=> 2A = 2 + 22 + ... + 2200 + 2201
=> 2A - A = 2201 - 1
=> A = 2201 - 1
=> A + 1 = 2201 - 1 + 1 = 2201
2. B = 3 + 32 + 33 + ... + 32005
=> 3B = 32 + 33 + ... + 32005 + 32006
=> 3B - B = 32006 - 3
=> 2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3 = 32006 (là lũy thừa của 3)
=> đpcm
@hanie anh
Cho S = 1 + 3 + 32 + 33 +.......+399
Chứng tỏ 2S + 1 là lũy thừa của 3
2S+1 là lũy thừa của 3
trình bày ra mà kết quả cũng ko đúng
S =1+3+32+33+…+399
3S =3+32+33+…+3100
3S-S=3100-1
2S=3100-1
2S+1=3100
Chứng tỏ 2S +1 là luỹ thừa của
a, chứng minh rằng [abc+bca+cab] chia hết cho 11
b,cho A =1+2+22 +23+24+.....+2200.hãy viết A+1 dưới dạng 1 lũy thừa
c, cho B =3+32+33+......+32005.CMR 2B +3 là lũy thừa của
Em kiểm tra lại đề bài nhé.
c Câu hỏi của luongngocha - Toán lớp 6 - Học toán với OnlineMath
b. Câu hỏi của son goku - Toán lớp 6 - Học toán với OnlineMath
a. Câu hỏi của Trần Thị Thanh Thảo - Toán lớp 6 - Học toán với OnlineMath