\(5^x.\left(5^3\right)^2=625\)
tìm x biết:
a) \(5^x.\left(5^3\right)^2=625\)
b)\(\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{3}\right)^{-5}-\left(-\dfrac{3}{5}\right)^4\)
c)\(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
d)\(172x^2-7^9:98^3=2^{-3}\)
tìm x:
\(a,5^x.\left(5^2\right)^3=625\)
\(b,\left(\dfrac{12}{15}\right)^x=\left(\dfrac{5}{4}\right)^{-2}-\left(\dfrac{-3}{5}\right)^4\)
\(c,\left(\dfrac{-3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
\(d,172x^2-7^9:98^3=2^{-3}\)
tìm x
\(a,5^x-\left(5^3\right)^2=625\)
\(b,\left(\frac{12}{25}\right)^x=\left(\frac{5}{3}\right)^{-2}-\left(\frac{-3}{5}\right)^4\)
a) \(5^x-\left(5^3\right)^2=625\)
\(\Leftrightarrow5^x-5^6=5^4\)
\(\Leftrightarrow x-6=4\)
\(\Leftrightarrow x=10\)
b) \(\left(\frac{12}{25}\right)^x=\left(\frac{5}{3}\right)^{-2}-\left(-\frac{3}{5}\right)^4\)
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125};\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\)
\(\left(x-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(x-\dfrac{2}{15}=\dfrac{2}{5}\)
\(x=\dfrac{2}{5}+\dfrac{2}{15}\)
\(x=\dfrac{8}{15}\)
\(\left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\)
\(\left(\dfrac{4}{5}\right)^{2x+5}=\left(\dfrac{4}{5}\right)^4\)
\(2x+5=4\)
\(2x=-1\)
\(x=-0,5\)
\(\left(x-\dfrac{2}{15}\right)^3=\dfrac{8}{125}\\ \Rightarrow\left(x-\dfrac{2}{15}\right)^3=\left(\dfrac{2}{5}\right)^3\\ \Rightarrow x-\dfrac{2}{15}=\dfrac{2}{5}\\ \Rightarrow x=\dfrac{2}{5}+\dfrac{2}{15}\\ \Rightarrow x=\dfrac{6}{15}+\dfrac{2}{15}\\ \Rightarrow x=\dfrac{8}{15}\\ \left(\dfrac{4}{5}\right)^{2x+5}=\dfrac{256}{625}\\ \Rightarrow\left(\dfrac{4}{5}\right)^{2x+5}=\left(\dfrac{4}{5}\right)^4\\ \Rightarrow2x+5=4\\ \Rightarrow2x=4-5\\ \Rightarrow2x=-1\\ \Rightarrow x=-\dfrac{1}{2}\)
Tìm x biết :
\(5^x.\left(5^3\right)^2=625\)
5x.(53)2=625
=> 5x.56=54
=> 5x=54:56
=> 5x=5-2
=> x=-2
Vậy x=-2
\(^{=>5^x.5^6=5^4}\)
=> \(5^x=5^{4-6}\)
=>x=-2
\(\left(\frac{3}{7}\right)^5.\left(\frac{7}{3}\right)^{-1}.\left(\frac{5}{3}\right)^6:\left(\frac{343}{625}\right)^{-2}\)
\(\left(\dfrac{3}{7}\right)^5.\left(\dfrac{7}{3}\right)^{-1}.\left(\dfrac{5}{3}\right)^6:\left(\dfrac{343}{625}\right)^{-2}\)
\(=\left(\dfrac{3}{7}\right)^5\cdot\left(\dfrac{3}{7}\right)\cdot\left(\dfrac{5}{3}\right)^6:\left(\dfrac{5^4}{7^3}\right)^2\)
\(=\dfrac{3^6}{7^6}\cdot\dfrac{5^6}{3^6}:\dfrac{5^8}{7^6}\)
\(=\dfrac{5^6}{5^8}=\dfrac{1}{25}\)
Giúp mik nhé !!
a,\(\left(x-3\right)\left(4-5x\right)=0\)
b,\(\left|x+\frac{3}{4}\right|+\frac{1}{3}=0\)
c,\(5^x\cdot\left(5^3\right)^2=625\)
d,\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)
d,\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\\ \Leftrightarrow\left(x-\frac{2}{9}\right)^3=\left(\frac{4}{9}\right)^3\\ \Leftrightarrow x-\frac{2}{9}=\frac{4}{9}\\ \Leftrightarrow x=\frac{6}{9}\)
Vậy...
a) \(\left(x-3\right).\left(4-5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\4-5x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+3\\5x=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=4:5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{4}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{3;\frac{4}{5}\right\}.\)
b) \(\left|x+\frac{3}{4}\right|+\frac{1}{3}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=0-\frac{1}{3}\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=-\frac{1}{3}.\)
Ta luôn có: \(\left|x\right|\ge0\) \(\forall x.\)
\(\Rightarrow\left|x+\frac{3}{4}\right|>-\frac{1}{3}\)
\(\Rightarrow\left|x+\frac{3}{4}\right|\ne-\frac{1}{3}.\)
Vậy \(x\in\varnothing.\)
c) \(5^x.\left(5^3\right)^2=625\)
\(\Rightarrow5^x.5^6=5^4\)
\(\Rightarrow5^{x+6}=5^4\)
\(\Rightarrow x+6=4\)
\(\Rightarrow x=4-6\)
\(\Rightarrow x=-2\)
Vậy \(x=-2.\)
Chúc bạn học tốt!
a) (x - 3) (4 - 5x) = 0
\(\Rightarrow\) \(\left[{}\begin{matrix}x-3=0\\4-5x=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x=3\\5x=4\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x=3\\x=0,8\end{matrix}\right.\)
Vậy x \(\in\) \(\left\{3;0,8\right\}\)
b) |x + \(\frac{3}{4}\) | + \(\frac{1}{3}\) = 0
|x + \(\frac{3}{4}\) | = \(\frac{1}{3}\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{3}\\x+\frac{3}{4}=\frac{-1}{3}\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x+\frac{9}{12}=\frac{4}{12}\\x+\frac{9}{12}=\frac{-4}{12}\end{matrix}\right.\)
\(\Rightarrow\) \(\left[{}\begin{matrix}x=\frac{-5}{12}\\x=\frac{-13}{12}\end{matrix}\right.\)
Vậy x \(\in\) \(\left\{\frac{-5}{12};\frac{-13}{12}\right\}\)
c) 5\(^x\) . (5\(^3\))\(^2\) = 625
5\(^x\) . 5\(^6\) = 5\(^4\)
x + 6 = 4
x = 4 - 6
x = -2
Vậy x = -2
d)(x - \(\frac{2}{9}\)) \(^3\) = (\(\frac{2}{3}\))\(^6\)
(x - \(\frac{2}{9}\)) \(^3\) = \([(\frac{2}{3})^2]^3\)
x - \(\frac{2}{9}\) = \(\frac{4}{9}\)
x = \(\frac{4}{9}\) + \(\frac{2}{9}\)
x = \(\frac{2}{3}\)
Vậy x = \(\frac{2}{3}\)
Bài 1: Tìm x
a) \(\left(\frac{1}{8}\right)^x.27^{2.x}=\left(-9\right)^4\)
b) \(5^x\left(5^3\right)^2=625\)
c)\(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
a) \(\left(\frac{1}{81}\right)^x\cdot27^{2x}=\left(-9\right)^4\)
\(\Leftrightarrow\frac{1}{3^{4x}}\cdot3^{6x}=9^4\)
\(\Leftrightarrow\frac{3^{6x}}{3^{4x}}=3^8\)
\(\Leftrightarrow3^{2x}=3^8\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
b) \(5^x\cdot\left(5^3\right)^2=625\)
\(\Leftrightarrow5^{x+6}=5^4\)
\(\Leftrightarrow x+6=4\)
\(\Leftrightarrow x=-2\)
c) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\Leftrightarrow\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\Leftrightarrow\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\\left(4x-1\right)^{10}=1=\left(\pm1\right)^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{1}{2}\\x=0\end{matrix}\right.\)
Vậy....
xin lỡi các bạn nhé
câu a là \(\frac{1}{81}\)