Những câu hỏi liên quan
MT
Xem chi tiết
TL
6 tháng 8 2015 lúc 20:17

\(x+\frac{1+\sqrt{4x+1}}{2}=\frac{2x+1+\sqrt{4x+1}}{2}=\frac{\left(4x+1\right)+2\sqrt{4x+1}+1}{4}=\left(\frac{1+\sqrt{4x+1}}{2}\right)^2\)

=> \(\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}=\sqrt{\left(\frac{1+\sqrt{4x+1}}{2}\right)^2}=\frac{1+\sqrt{4x+1}}{2}\). tiếp tục n dấu căn

=> A = \(\frac{1+\sqrt{4x+1}}{2}\) 

Bình luận (0)
TA
Xem chi tiết
BB
Xem chi tiết
LT
Xem chi tiết
QT
Xem chi tiết
HK
Xem chi tiết
NM
Xem chi tiết
NT
Xem chi tiết
KD
Xem chi tiết
NQ
28 tháng 1 2021 lúc 11:45

\(A=1-\left(\frac{2}{1+2\sqrt{x}}-\frac{5\sqrt{x}}{4x-1}-\frac{1}{1-2\sqrt{x}}\right):\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)

\(=1-\left(\frac{2\left(1-2\sqrt{x}\right)+5\sqrt{x}-1-2\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(1-2\sqrt{x}\right)}\right):\frac{\sqrt{x}-1}{\left(1+2\sqrt{x}\right)^2}\)

\(=1-\frac{1-\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(1-2\sqrt{x}\right)}.\frac{\left(1+2\sqrt{x}\right)^2}{\sqrt{x}-1}=1-\frac{1+2\sqrt{x}}{1-2\sqrt{x}}=2-\frac{2}{1-2\sqrt{x}}\)

để A là số nguyên thì \(1-2\sqrt{x}\) là ước của 2 khi đó ta tìm được \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa