Biểu thức cần rút gọn : \(\sqrt{x+\sqrt{x+...+\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}}}\) (ĐK : \(x\ge-\frac{1}{4}\))
Ta xét : \(x+\frac{1+\sqrt{4x+1}}{2}=\frac{2x+1+\sqrt{4x+1}}{2}=\frac{4x+1+2\sqrt{4x+1}+1}{4}=\left(\frac{\sqrt{4x+1}+1}{2}\right)^2\)
\(\Rightarrow\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}=\frac{\sqrt{4x+1}+1}{2}\)
Do đó, biểu thức cần rút gọn sẽ bằng với : \(\frac{\sqrt{4x+1}+1}{2}\)
Đúng 0
Bình luận (0)