LC

Rút gọn biểu thức: \(\sqrt{x+\sqrt{x+...+\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}}}\)    (n dấu căn)

HN
20 tháng 6 2016 lúc 21:50

Biểu thức cần rút gọn : \(\sqrt{x+\sqrt{x+...+\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}}}\) (ĐK : \(x\ge-\frac{1}{4}\))

Ta xét : \(x+\frac{1+\sqrt{4x+1}}{2}=\frac{2x+1+\sqrt{4x+1}}{2}=\frac{4x+1+2\sqrt{4x+1}+1}{4}=\left(\frac{\sqrt{4x+1}+1}{2}\right)^2\)

\(\Rightarrow\sqrt{x+\frac{1+\sqrt{4x+1}}{2}}=\frac{\sqrt{4x+1}+1}{2}\)

Do đó, biểu thức cần rút gọn sẽ bằng với : \(\frac{\sqrt{4x+1}+1}{2}\)

Bình luận (0)