tính :M=1/1.1+1/3.2011+1/5.2009+...+1/2011+1/2013.1
\(Cho\)\(A=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2013}\)\(B=\frac{1}{1.2013}+\frac{1}{3.2011}+...+\frac{1}{2011.3}+\frac{1}{2013.1}\)\(Tính\)\(A:B\)
\(B=\frac{1}{1.2013}+\frac{1}{3.2011}+...+\frac{1}{3.2011}+\frac{1}{1.2013}\)
\(=\frac{1}{2014}\left(\frac{2014}{1.2013}+\frac{2014}{3.2011}+...+\frac{2014}{1.2013}\right)\)
\(=\frac{1}{2014}\left(\frac{1}{1.2013}+\frac{2013}{1.2013}+\frac{3}{3.2011}+\frac{2011}{3.2011}+...+\frac{2013}{2013.1}+\frac{1}{2013.1}\right)\)
\(=\frac{1}{2014}\left(1+\frac{1}{2013}+\frac{1}{3}+\frac{1}{2011}+...+\frac{1}{2013}+1\right)\)
\(=\frac{2}{2014}\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)\)
\(=\frac{1}{1007}\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2013}}{\frac{1}{1007}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2013}\right)}=\frac{1}{\frac{1}{1007}}=1007\)
chứng minh 2015^2015+3.2011^2011+2018^2015 chia hết cho 10
\(K=\frac{1+\left(1+2\right)+...+\left(1+2+...+2013\right)}{2013.1+2012.2+...+2.2012+1.2013}\)
Hỏi K + 2013 = ?
Giúp mk nha !
Mk nghĩ ra rồi :
\(K=\frac{1+\left(1+2\right)+...+\left(1+2+...+2013\right)}{2013.1+2012.2+2011.3+...+1.2013}\)
Ta thấy có 2013 số 1 ở tử số, 2012 chữ số 2, ..., vậy ta có :
\(K=\frac{1.2013+2.2012+...+2013.1}{2013.1+2012.2+...+1.2013}\)
\(\Rightarrow K=1\)\(\Rightarrow K+2013=2014\)
Đ/S : 2014
\(K=\frac{1+\left(1+2\right)+...+\left(1+2+3+...+2013\right)}{2013.1+2012.2+2011.3+...+2.2012+1.2013}\)
Hỏi K + 2013 bằng bao nhiêu ?
Giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
cho 2011 số tự nhiên x1;x2;...;x2011 thỏa mãn đk:
\(\frac{1}{x_1^{11}}+\frac{1}{x_2^{11}}+...+\frac{1}{x_{2011}^{11}}=\frac{2011}{2048}\) tính:
M=\(\frac{1}{x_1^1}+\frac{1}{x_2^2}+...+\frac{1}{x_{2011}^{2011}}\)
cho 2011 số tự nhiên thõa mãn điều kiện
\(\frac{1}{x_1^{11}}+\frac{1}{x_2^{11}}+\frac{1}{x_3^{11}}+...+\frac{1}{x_{2011}^{11}}=\frac{2011}{2048}\)
tính tổng \(M=\frac{1}{x_1^1}+\frac{1}{x_2^2}+\frac{1}{x_3^3}+...+\frac{1}{x_{2011}^{2011}}\)
Gọi i là đại diện cho các số từ 1 đến 2011
ĐKXĐ: \(a_i\ne0\left(i=1,2,3,..,2011\right)\)
Xét \(a_i=1\) Ta có: \(\frac{1}{a^{11}_i}=1>\frac{2011}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}>\frac{2011}{2048}\left(loai\right)\)
Xét \(a_i\ge2\) Ta có: \(\frac{1}{a^{11}_i}\le\frac{1}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}\le\frac{2011}{2048}\)
Dấu "=" xảy ra khi \(a_i=2\)
Thay vào ta có:
\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2M-M=\left(1+\frac{1}{2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\)
\(\Rightarrow M=1-\frac{1}{2^{2011}}\)
Câu 1:So sánh M= 1/1.2+1/2.3+...+1/49.50 với 1
Câu 2: Tính. B=1+2+2^2+2^3+...+2^2008/1-2^2009
Câu 3.Tính. B=1/2+1/6+1/12+1/20+1/30+...+1/9900
Câu 4.Tính. 1/1.3+1/3.5+1/5.7+...+1/2009.2011
Câu 5. So sánh:
A=2011+2012/2012+2013
Và B=2011/2012+2011/2012+2012/2013
Câu 6: Tìm x biết :.(x/7+0,25)=-1/28
Không dùng máy tính,hãy so sánh: A= 2011^2010+1/2011^2011+1 với B= 2011^2011+1/2011^2012+1
Vì 20112011<20112012 =>20112011 +1<20112012 +1
=> 20112011+1/20112012+1 <1
=>B<1
=>B=20112011+1/20112012+1<20112011+1+2010/20112012+1+2010
=>B<20112011+2011/20112012+2011=20112010.2011+2011/20112011.2011+2011=2011.(20112010+1)/2011.(20112011+1)
=>B<20112010+1/20112011+1=A
=>B<A
Vậy B<A
tính nhanh 1/1.1/2+1/2.1/3+1/3.1/4+........+1/9991000
1/1.2+1/2.3+1/3.4+1/4.5+.................+1/9990999.9991000
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.................+1/9990999-1/9991000
=1-1/9991000
=9990999/9991000