Giải bất phương trình
5(x+y+z+t)+10=2xyzt
giải phương trình nghiệm nguyên: \(x^2+y^2+z^2+t^2=2xyzt\)
Tìm nghiệm nguyên dương của phương trình sau :
5(x + y + z + t) + 10 = 2xyzt
Tìm x,y,z,t nguyên dương thỏa mãn \(5\left(x+y+z+t\right)+10=2xyzt\)
Giả sử \(x\ge y\ge z\ge t\)
Có 5(x+y+z+t) = 2xyzt
<=> \(2=\dfrac{5}{yzt}+\dfrac{5}{xyz}+\dfrac{5}{xyt}+\dfrac{5}{xzt}+\dfrac{10}{xyzt}\le\dfrac{20}{t^3}+\dfrac{10}{t^4}\le\dfrac{30}{t^3}\)
<=> t3 \(\le15\)
<=> \(\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: t = 1
<=> \(2=\dfrac{5}{yz}+\dfrac{5}{xyz}+\dfrac{5}{xy}+\dfrac{5}{xz}+\dfrac{10}{xyz}=\dfrac{5}{xy}+\dfrac{5}{yz}+\dfrac{5}{zx}+\dfrac{15}{xyz}\)
\(\le\dfrac{15}{z^2}+\dfrac{15}{z^3}\le\dfrac{30}{z^2}\)
<=> z2 \(\le15\)
<=> \(\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)
- Với z = 1
PT <=> 5 (x+y+2) + 10 = 2xy
<=> (2x-5)(2y-5) = 65
<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=35\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=9\\y=5\end{matrix}\right.\end{matrix}\right.\)
Vậy (x;y;z;t) = (35;3;1;1) hoặc (9;5;1;1) và có hoán vị
- Với z = 2;3 => Vô nghiệm
TH2: t = 2
PT <=> 5(x+y+z) + 20 = 4xyz
<=> \(4=\dfrac{5}{xy}+\dfrac{5}{yz}+\dfrac{5}{zx}+\dfrac{20}{xyz}\le\dfrac{35}{z^2}\)
<=> \(\left[{}\begin{matrix}z=1\left(l\right)\\z=2\left(c\right)\end{matrix}\right.\)
<=> 5(x+y+4) + 10 = 8xy
<=> (8x-5)(8y-5) = 265
=> Vô nghiệm
KL: Vậy (x;y;z;t) = (35;3;1;1) hoặc (9;5;1;1) và có hoán vị
Tìm nghiêm nguyên dương
5. (x + y + z + t) + 10 = 2xyzt
Tìm nghiệm nguyên dương của phân thức
a , x + y + z + 9 = xyz
b, 5( x + y + z+ t ) + 10 = 2xyzt
giải chi tiết giùm nha
câu b giả sử x>_y>_z>_t>_1 (>_ lớn hơn hoặc =)
khi do 2xyzt=5(x+y+z+t)+10 _< 20x+10
=>xyzt _<10x+5 _<15x=>yzt_<15=>t^3_<15=>t_<2(vi t la nguyen duong)
voi t=1 ta co 2xyz=5(x+y+z)+15=>2yz _<30=>z_<3
roi tiep tuc thu cac truong hop can lai
voi t=2 lam tuong tu
phần b của bạn hình như đề bài sai nếu là +0 thì có ý nghĩa j phải là +10 chứ
câu b đề bài sai rồi là 5(x+y+z+t)+10=2xyzt chu
Giải phương trình nghiệm nguyên dương:
a, \(\left(x+y+1\right)^2=3\left(x^2+y^2+1\right)\)
b, \(5\left(x+y+z+t\right)+10=2xyzt\)
c, \(x^6+3x^3+1=y^4\)
Câu a:
\((x+y+1)^2=3(x^2+y^2+1)\)
\(\Leftrightarrow x^2+y^2+1+2x+2y+2xy=3(x^2+y^2+1)\)
\(\Leftrightarrow 2x^2+2y^2+2-2x-2y-2xy=0\)
\(\Leftrightarrow (x^2+y^2-2xy)+(x^2-2x+1)+(y^2-2y+1)=0\)
\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2=0\)
\(\Rightarrow (x-y)^2=(x-1)^2=(y-1)^2=0\)
\(\Rightarrow x=y=1\)
Vậy PT có nghiệm $(x,y)=(1,1)$
Câu c:
Ta thấy:
\(x^6+3x^3+1=(x^6+2x^3+1)+x^3>x^6+2x^3+1=(x^3+1)^2\)
\(x^6+3x^3+1< x^6+4x^3+4=(x^3+2)^2\)
Do đó:
\((x^3+1)^2< x^6+3x^3+1< (x^3+2)^2\)
\(\Rightarrow (x^3+1)^2< y^4< (x^3+2)^2\). Theo nguyên lý kẹp suy ra không tồn tại $y$ nguyên dương thỏa mãn điều kiện trên. Kéo theo không tồn tại $x$
Vậy không tồn tại $x,y$ thỏa mãn pt đã cho.
Câu b:
Không mất tính tổng quát, giả sử \(x\geq y\geq z\geq t\)
Khi đó:
\(2xyzt=5(x+y+z+t)+10\leq 5(x+x+x+x)+10\)
\(\Rightarrow xyzt\leq 10x+5\leq 10x+5x=15x\) (do \(x\geq 1)\)
\(\Rightarrow yzt\leq 15\)
Mà \(yzt\geq t.t.t=t^3\Rightarrow t^3\leq 15\Rightarrow t\in \left\{1;2\right\}\)
TH1: $t=1$:
Ta có: \(z^2\leq yz=yzt\leq 15\Rightarrow z\in \left\{1;2;3\right\}\)
$z=1$ : thay vào pt ban đầu: \(5(x+y)+20=2xy\)
\(\Leftrightarrow (2x-5)(2y-5)=65\).
PT này là pt tích, xét trường hợp ta thu được $(x,y)=(9,5); (35;3)$
$z=2,3$: tương tự: không thu được $x,y$ thỏa mãn
TH2: $t=2$
\(2z^2\leq 2yz=yzt\leq 15\Rightarrow z\in \left\{1;2\right\}\)
Mà $z\geq t=2$ nên $z=2$
Khi đó: \(2yz\leq 15\Rightarrow y\leq \frac{15}{2z}=\frac{15}{4}< 4\)
Mà $y\geq z=2$ nên $y=2$ hoặc $y=3$. Thay vào pt ban đầu ta cũng không thu được $x$ thỏa mãn
Vậy tóm lại pt có nghiệm \((x,y,z,t)=(9,5,1,1); (35,3,1,1)\) và các bộ hoán vị tương ứng.
Tìm nghiệm nguyên của pt
5(x+y+z+t)+10=2xyzt
Bạn tham khảo nhé!
Nguồn: 9 phương pháp giải phương trình nghiệm nguyên
tìm nghiệm nguyên của phương trình
5(x+y+z+t) + 15 = 2xyzt
Tìm nghiệm nguyên dương của phương trình:
\(5\left(x+y+z+t\right)+15=2xyzt\)
Vai trò của \(x;y;z;t\)như nhau nên ta coi \(x\ge y\ge z\ge t\)
\(\Rightarrow2xyzt=5\left(x+y+z+t\right)+15\le20x+15\)
\(\Rightarrow xyzt\le10x+3\)
\(x\ge1\)( nguyên dương )
\(\Rightarrow yzt\le13\)
\(\Rightarrow3t\le13\)
\(\Rightarrow t\le4\)
Với \(t=1:\)\(2xyz.1=5\left(x+y+z+1\right)+15\)
\(2xyz=5\left(x+y+z\right)+20\le15x+20\)
\(\Rightarrow2yz\le35\)
\(\Rightarrow2.2z\le35\left(y\ge z\right)\)
\(\Rightarrow z\le8\)
Thôi nhiều trường hợp lắm bà tự giải theo hướng đó nhé. Tớ còn chưa học phương trình.
Lâu r ko làm thử bài pt nghiệm nguyên nào
\(5\left(x+y+z+t\right)+15=2xyzt\left(1\right)\)
Không mất tính tổng quát,giả sử \(1\le x\le y\le z\le t\)
Dễ thấy cả 2 vế đều khác 0,chia 2 vế của pt cho xyzt:
\(\left(1\right)\Leftrightarrow\frac{5}{xyz}+\frac{5}{xzt}+\frac{5}{xyt}+\frac{5}{yzt}+\frac{15}{xyzt}=2\)
\(\Leftrightarrow\frac{5}{xyz}+\frac{5}{xzt}+\frac{5}{xyt}+\frac{5}{yzt}+\frac{15}{xyzt}\le\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{15}{x^3}=\frac{35}{x^3}\)
\(\Leftrightarrow2\le\frac{35}{x^3}\Leftrightarrow2x^3\le35\Leftrightarrow x\in\left\{1;2\right\}\)
(*)x=1
\(=>2=\frac{5}{yz}+\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yzt}+\frac{15}{yzt}\le\frac{35}{y^2}\)
\(=>2\le\frac{35}{y^2}=>2y^2\le35=>y^2\le\frac{35}{2}=>y\in\left\{1;2;3;4\right\}\)
+x=1;y=1 thì \(\left(1\right)< =>5\left(z+t\right)+25=2zt< =>5z+5t+25=2zt\)
\(< =>4zt=2\left(5z+5t+25\right)=10z+10t+50\)
\(< =>4zt-10z-10t-50=0< =>4zt-10z-10t+25=75\)
\(< =>2z\left(2t-5\right)-5\left(2t-5\right)=75< =>\left(2z-5\right)\left(2t-5\right)=75\)
Vì \(1\le z\le t=>-3\le2z-5\le2t-5\)
\(=>\left(2z-5\right)\left(2t-5\right)=75=75.1=25.3=15.5\)
Ta xét bảng:
2z-5 | 75 | 25 | 15 |
2t-5 | 1 | 3 | 5 |
Suy ra :(z;t)=(3;40);(4;15);(5;10)
+x=1;y=2 thì \(\left(1\right)< =>5\left(z+t\right)+30=4zt< =>5z+5t+30=4zt\)
\(< =>16zt=4\left(5z+5t+30\right)< =>16zt=20z+20t+120\)
\(< =>16zt-20z-20t-140=0< =>16zt-20z-20t+25=145\)
\(< =>\left(4z-5\right)\left(4t-5\right)=145\)
Xét bảng.... => ko tìm đc (z;t)=>loại TH này
+x=1;y=3 thì \(\left(1\right)< =>5\left(z+t\right)+35=6zt< =>5z+5t+35=6zt\)
\(< =>36zt=6\left(5z+5t+35\right)< =>36zt=30z+30t+210\)
\(< =>36zt-30z-30t-210=0< =>36zt-30z-30t+25=135\)
\(< =>\left(6z-5\right)\left(6t-5\right)=235\)
Xét bảng=> ko tìm đc (z;t)=>loại TH này
+x=1;y=4 thì \(\left(1\right)< =>5\left(z+t\right)+40=8zt< =>5z+5t+40=8zt\)
\(< =>6zt=8\left(5z+5t+40\right)=40z+40t+320\)
\(< =>6zt-40z-40t-320=0< =>6zt-40z-40t+25=345\)
\(< =>\left(8z-5\right)\left(8t-5\right)=345\)
Xét bảng=>ko tìm đc (z;t)=>loại TH này
(*)x=2 thì \(\left(1\right)< =>5\left(y+z+t\right)+25=4yzt\),chia 2 vế của pt cho yzt:
\(< =>\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yz}+\frac{25}{yzt}=4\le\frac{40}{y^2}< =>4y^2\le40< =>4\le y^2\le10\)
\(< =>y\in\left\{2;3\right\}\)
+x=2;y=2 thí \(\left(1\right)< =>5\left(z+t\right)+35=8zt< =>5z+5t+35=8zt\)
\(< =>64zt=8\left(5z+5t+35\right)=40z+40t+280\)
\(< =>64zt-40z-40t-280=0< =>64zt-40z-40t+25=305\)
\(< =>\left(8z-5\right)\left(8t-5\right)=305\)
Xét bảng=>ko tìm đc (z;t)=>loại TH này
+x=2;y=3 thì \(\left(1\right)< =>5\left(z+t\right)+40=12zt< =>5z+5t+40=12zt\)
\(< =>144zt=60z+60t+480\)
\(< =>144zt-60z-60t-480=0< =>144zt-60z-60t+25=505\)
Xét bảng=>ko tìm đc (z;t)=>loại TH này
Vậy pt (1) có các nghiệm (x;y;z;t) nguyên dương là (1;1;3;40);(1;1;5;10);(1;1;4;15) và các hoán vị của nó
Đặt: \(A=5\left(x+y+z+t\right)+15=2xyzt\)
Giả sử: \(x\le y\le z\le t\)
\(A\Leftrightarrow\frac{5}{yzt}+\frac{5}{xzt}+\frac{5}{xyt}+\frac{5}{xyt}+\frac{15}{xyzt}=2\le\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{5}{x^3}+\frac{15}{x^3}=\frac{35}{x^3}\)
Hay \(2x^3\le35\Rightarrow x\in\left\{1;2\right\}\)
TH1: \(x=1\) Ta có: \(\frac{5}{yzt}+\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yz}+\frac{15}{yzt}=2\le\frac{35}{x^3}\)
\(\Rightarrow2y^2\le35\Rightarrow y\in\left\{1;2;3;4\right\}\)
+ Nếu \(x=1;y=1\)
\(A\Leftrightarrow5\left(2+z+t\right)+15=2zt\)
\(\Leftrightarrow2\left(zt\right)+25=2zt\)
\(\Leftrightarrow5z+5t-2zt+25=0\)
\(\Leftrightarrow10z+10t-4zt+50=0\)
\(\Leftrightarrow10z-25+2t\left(5-2z\right)+75=0\)
\(\Leftrightarrow-5\left(5-2z\right)+2t.\left(5-2z\right)=-75\)
\(\Leftrightarrow\left(2t-5\right)\left(2z-5\right)=75=1.75=3.25=5.15\)
Có: \(-3\le2z-5\le2t-5\)
\(\Rightarrow\left(z;t\right)=\left(3;40\right),\left(4;15\right),\left(5;10\right)\)
+ Nếu \(x=1;y=2\)
\(A\Leftrightarrow5\left(3+z+t\right)+15=6zt\)
\(\Leftrightarrow5\left(z+t\right)+30=6zt\)
\(\Leftrightarrow\left(4z-5\right)\left(4t-5\right)=145\)
Vì \(4z-5\) và \(4t-5\) chia 4 dư 3 mà 145 không chứa thừa số chia 4 dư 3 suy ra phương trình vô nghiệm
Nếu \(x=1;y=3\Leftrightarrow\left(6z-5\right)\left(6t-5\right)=235\)
Có \(13\le6z-5\le6t-5\) mà \(235=5.47=1.235\)
=> phương trình cũng vô nghiệm
Xét \(x=1;y=4\)
\(\Rightarrow\left(8z-5\right)\left(8t-5\right)=345\)
=> phương trình vô nghiệm
TH2: \(x=2\)
\(A\Leftrightarrow5\left(2+y+z+t\right)+15=4yzt\)
\(\Leftrightarrow\frac{5}{zt}+\frac{5}{yt}+\frac{5}{yz}+\frac{25}{yzt}=4\le\frac{40}{y^2}\Rightarrow y\in\left\{2;3\right\}\)
Nếu \(x=2;y=2\)
Ta có: \(5\left(4+z+t\right)+15=8zt\)
\(\Leftrightarrow5\left(z+t\right)+35=8zt\)
\(\Leftrightarrow\left(8z-5\right)\left(8t-5\right)=305\).
=> phương trình vô nghiệm
Xét \(x=3;y=3\)
\(\Rightarrow\left(12z-5\right)\left(12t-5\right)=505\)
=> phương trình vô nghiệm
Kết luận:.......