Cho 2 số a và b chứng minh a + b > 0 . Biết rằng a , b > 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.a)Cho các số dương a,b,c có tích bằng 1.Chứng minh rằng (a+1)(b+1)(c+1) lớn hơn hoặc bằng 8.
b)Chocacs số a và b không âm.Chứng minh rằng (a+b)(ab+1) lớn hơn hoặc bằng 4ab.
2.Cho các số dương a,b,c,d có tích bằng 1.Chứng minh rằng a bình +b bình +c bình +d bình +ab+cd lớn hơn hoặc bằng 6.
3.Chứng minh rằng nếu a+b+c>0.abc>0.ab+bc+ca>0 thì a>0,b>0,c>0.
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề
Bài 1:
a. Cho a,b,c > 0. CHứng tỏ rằng: M= a/a+b + b/b+c + c/c+a không là số nguyên.
b. Cho a,b,c thỏa mãn: a+b+c = 0. Chứng minh rằng: ab+bc+ca ≤ 0.
Bài 2:
Tìm hai số dương khác nhau x,y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35;210 và 12.
1
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)
=> M ko là số tự nhiên
2
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)
3
\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)
\(\Rightarrow35x+35y=2010x-2010y\)
\(\Rightarrow35-2010x=2010y-35y\)
\(\Rightarrow-175x=-245y\)
\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\)
\(\Rightarrow x=7k;y=5k\)
\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)
\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)
Vậy \(x=7;y=5\)
bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3*
Cho hai số tự nhiên a và b (đều khác 0), biết tổng ( a + b) không chia hết cho 2; chứng minh rằng tích (a x b) luôn chia hết cho 2
Ví 1 số :2 dư 0 hoặc 1 mà (a+b) ko chia hết cho 2 => (a+b) :2 dư 1=>1 trong 2 số phải chia hết cho2
Bài 3 : Chứng minh rằng một số tự nhiên được viết bằng toàn chữ số 4 thì không chia hết cho 8
Bài 4: Tìm 2 số tự nhiên khác 0 biết tích của 2 số gấp 2 lần tổng của chúng
Bài 5:Cho a và b là các số tự nhiên khác 0 và a>2;b>2 . Chứng minh rằng axb > a+b
Đề sai rồi em, đề đúng phải là:
\(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)=ab\)
Vế phải em thiếu a
Giải giúp mình câu này nhé. Thanks nhiều
cho 2 số hữu tỉ
a/b và c/d(biết b>0;d>0)
chứng minh rằng a/b < c/d nếu a.d < b.c
chứng minh rằng a.d < b.c nếu a/b < c/d
thanks nhiều
Làm nhắn gọn hơn thì
1
a/b < c/d
=> ad/bd < cb/db
=> ad < cb
2
ad < cb
=>ad /bd < cb/bd
Chúc pn hc tốt
BÀI 1: CHỨNG MINH RẰNG 4 SỐ TỰ NHIÊN BẤT KỲ BAO GIỜ CŨNG CÓ HIỆU HAI SỐ CHIA HẾT CHO 3
BÀI 2: CHO 3 SỐ TỰ NHIÊN a,b và c.Trong đó a và b chia cho 5 dư 3 còn c chia cho 5 dư 2
a CHỨNG MINH RẰNG MỖI TỔNG HOẶC HIỆU a+b+c hoặc a+c-b;a-b chia hết cho 5
b Mỗi tổng hoặc hiệu a+b+c; a+b-c ; a+c-b có chia hết cho 5 không
Bài 3 : Chứng minh rằng một số tự nhiên được viết bằng toàn chữ số 4 thì không chia hết cho 8
Bài 4: Tìm 2 số tự nhiên khác 0 biết tích của 2 số gấp 2 lần tổng của chúng
Bài 5:Cho a và b là các số tự nhiên khác 0 và a>2;b>2 . Chứng minh rằng axb > a+b
Làm nhanh trong ngày hôm nay và ngày mai hộ mình nha
trân thành cảm ơn
1. Chứng minh rằng
a) (a+b-c) + (a-b) - (a-b-c) = - (a-b+c)
b) - (a-b-c) + (-a+b-c ) - (-a+b+c) + (c-a)
2. Cho M = (-a+b) - (b+c+a) + (c-a)
Chứng minh rằng nếu a < 0 thì M > 0
3. Chứng minh A và B là 2 số đối nhau
a) A = a-b , B = b-a
b) A = a-b+c , B = -a+b-c
4. Cho a-b=1 . Tinh S , biết :
S= -(a-b-c) + (-c+b+a) - ( a+b )
1. Cho biểu thức A=(-a-b+c)-(-a-b-c). Hãy rút gọn biểu thức A
2.Tìm tất cả các số nguyên a biết (6a+1) chia hết cho (3a-1)
3.Tìm số nguyên a,b biết a>0 và a(b-2)=3
4.Chứng minh rằng nếu 2 số a,b là 2 số nguyên khác 0 và a là bội của b;b là bội của a thì a=b hoặc a=-b