tìm x biết : 2x*(x-5)+(2x-1)*(x-3)=21
Tìm x biết : a) 2x+3/15 = 7/5. b) x-2/9 = 8/3. c) -8/x = -x/18 d) 2x+3/6 = x-2/5. e) x+1/22 = 6/x f) 2x-1/2 = 5/x g) 2x-1/21 = 3/2x+1 h) 10x+5/6 = 5/x+1
a) \(2x+\frac{3}{15}=\frac{7}{5}\)
=> \(2x=\frac{7}{5}-\frac{3}{15}=\frac{21}{15}-\frac{3}{15}=\frac{18}{15}\)
=> \(x=\frac{18}{15}:2=\frac{18}{15}\cdot\frac{1}{2}=\frac{9}{15}\cdot\frac{1}{1}=\frac{9}{15}\)
b) \(x-\frac{2}{9}=\frac{8}{3}\)
=> \(x=\frac{8}{3}+\frac{2}{9}\)
=> \(x=\frac{24}{9}+\frac{2}{9}=\frac{26}{9}\)
c) \(\frac{-8}{x}=\frac{-x}{18}\)
=> x(-x) = (-8).18
=> -x2 = -144
=> x2 = 144(bỏ dấu âm)
=> x = \(\pm\)12
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\)
=> 5(2x + 3) = 6(x - 2)
=> 10x + 15 = 6x - 12
=> 10x + 15 - 6x + 12 = 0
=> 4x + 27 = 0
=> 4x = -27
=> x = -27/4
e) \(\frac{x+1}{22}=\frac{6}{x}\)
=> x(x + 1) = 132
=> x(x + 1) = 11.12
=> x = 11
f) \(\frac{2x-1}{2}=\frac{5}{x}\)
=> x(2x - 1) = 10
=> 2x2 - x = 10
=> 2x2 - x - 10 = 0
tới đây tự làm đi nhé
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63
=> 4x2 - 1 = 63
=> 4x2 = 64
=> x2 = 16
=> x = \(\pm\)4
h) Tương tự
a) \(\frac{2x+3}{15}=\frac{7}{5}\Leftrightarrow10x+15=105\Leftrightarrow10x=90\Rightarrow x=9\)
b) \(\frac{x-2}{9}=\frac{8}{3}\Leftrightarrow3x-6=72\Leftrightarrow3x=78\Rightarrow x=26\)
c) \(\frac{-8}{x}=\frac{-x}{18}\Leftrightarrow x^2=144\Leftrightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
d) \(\frac{2x+3}{6}=\frac{x-2}{5}\Leftrightarrow10x+15=12x-12\Leftrightarrow2x=27\Rightarrow x=\frac{27}{2}\)
e) \(\frac{x+1}{22}=\frac{6}{x}\Leftrightarrow x^2+x-132=0\Leftrightarrow\left(x-11\right)\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}x=11\\x=-12\end{cases}}\)
f) \(\frac{2x-1}{2}=\frac{5}{x}\Leftrightarrow2x^2-x-10=0\Leftrightarrow\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{5}{2}\end{cases}}\)
g) \(\frac{2x-1}{21}=\frac{3}{2x+1}\Leftrightarrow4x^2=64\Leftrightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\Leftrightarrow10x^2+15x-25=0\Leftrightarrow5\left(x-1\right)\left(2x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
Tìm x
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\)
`=> (x-3)5 = (2x+1)3`
`=> 5x-15 = 6x+3`
`=> 5x-6x = 15+3`
`=> -x=18`
`=> x=-18`
\(\dfrac{x+1}{22}=\dfrac{6}{x}\)
`=> (x+1)x = 22*6`
`=> (x+1)x = 132`
`=> x^2 + x = 132`
`=> x^2+x-132=0`
`=> (x-11)(x+12)=0`
`=>`\(\left[{}\begin{matrix}x-11=0\\x+12=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=11\\x=-12\end{matrix}\right.\)
\(\dfrac{2x-1}{2}=\dfrac{5}{x}\)
`=> (2x-1)x = 2*5`
`=> 2x^2 - x =10`
`=> 2x^2 - x - 10 =0`
`=> 2x^2 + 4x - 5x - 10 =0`
`=> (2x^2 + 4x) - (5x+10)=0`
`=> 2x(x+2) - 5(x+2)=0`
`=> (2x-5)(x+2)=0`
`=>`\(\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\)
`=> (2x-1)(2x+1)=21*3`
`=> 4x^2 + 2x - 2x - 1 = 63`
`=> 4x^2 - 1=63`
`=> 4x^2 - 1 - 63=0`
`=> 4x^2 - 64 = 0`
`=> 4(x^2 - 16)=0`
`=> 4(x^2 + 4x - 4x - 16)=0`
`=> 4[(x^2+4x)-(4x+16)]=0`
`=> 4[x(x+4)-4(x+4)]=0`
`=> 4(x-4)(x+4)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\x+4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
\(\dfrac{2x+1}{9}=\dfrac{5}{x+1}\)
`=> (2x+1)(x+1) = 9*5`
`=> (2x+1)(x+1)=45`
`=> 2x^2 + 2x + x + 1 = 45`
`=> 2x^2 + 3x + 1 =45`
`=> 2x^2 + 3x + 1 - 45 =0`
`=> 2x^2+3x-44=0`
`=> 2x^2 + 11x - 8x - 44=0`
`=> (2x^2 +11x) - (8x+44)=0`
`=> x(2x+11) - 4(2x+11)=0`
`=> (x-4)(2x+11)=0`
`=>`\(\left[{}\begin{matrix}x-4=0\\2x+11=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\2x=-11\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4\\x=-\dfrac{11}{2}\end{matrix}\right.\)
\(\dfrac{x-3}{3}=\dfrac{2x+1}{5}\\ \left(x-3\right)\cdot5=\left(2x+1\right)\cdot3\\ x5-15=6x+3\\ x5-6x=3+15\\ -x=18\\ \Rightarrow x=-18\)
\(\dfrac{x+1}{22}=\dfrac{6}{x}\\ \left(x+1\right)\cdot x=6\cdot22\\ \left(x+1\right)\cdot x=2\cdot3\cdot2\cdot11\\ \left(x+1\right)\cdot x=12\cdot11\\ \Rightarrow x=11\)
\(\dfrac{2x-1}{21}=\dfrac{3}{2x+1}\\ \left(2x-1\right)\cdot\left(2x+1\right)=21\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot3\cdot3\\ \left(2x-1\right)\cdot\left(2x+1\right)=7\cdot9\\ \Rightarrow2x+1=9\\ 2x=8\\ x=4\)
tìm x biết
a) (6x-3) (2x+4) + (4x-1) (5-3x) = -21
b) 6x (3x+5) - 2x (9x-2) + (17-x) (x-1) + x (x-18) =0
c) (15-2x) (4x+1) - (13-4x) (2x-3) - (x-1) (x+2) + x2=52
d) (8x-3) (3x+2) - (4x+7) (x+4) = (2x+1) (5x-1) - 33
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) ( 6x - 3 ) ( 2x + 4 ) + ( 4x - 1 ) ( 5 - 3x ) = -21
<=> 12x2 + 24x - 6x - 12 + 20x - 12x2 - 5 + 3x = -21
<=> 41x = -21 + 12 + 5
<=> 41x = -4
<=> x = -4/41
Tìm x Biết :
a) |2x-3|+x=21
b) |2x-5|+x=2
c) |2x-7|=2x+1
d) |2x-5|=x+1
CÁC BẠN ƠI GIÚP MÌNH NHA. MÌNH ĐANG CẦN ĐÁP ÁN GẤP GẤP LẮM!!!
a) |2x-3|+x=21
|2x-3|=21-x
\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=21-x\\2x-3=-\left(21-x\right)\end{cases}}\)
TH1: 2x-3=21-x
2x-x=21+3
x=24
TH2: 2x-3=-(21-x)
2x-3 = -21+x
2x-x=-21+3
x=-18
Vậy x \(\varepsilon\){-18;24}
Tìm x biết
f) \(\frac{2x-1}{21}\)=\(\frac{3}{2x+1}\)
g)\(\frac{2x-1}{21}=\frac{3}{2x+1}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
f) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)( ĐKXĐ : \(x\ne-\frac{1}{2}\))
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=21\cdot3\)
\(\Leftrightarrow4x^2-1=63\)
\(\Leftrightarrow4x^2=64\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x^2=\left(\pm4\right)^2\)
\(\Leftrightarrow x=\pm4\)(tmđk)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)( ĐKXĐ : \(x\ne-1\))
\(\Leftrightarrow\left(10x+5\right)\left(x+1\right)=6\cdot5\)
\(\Leftrightarrow10x^2+15x+5=30\)
\(\Leftrightarrow10x^2+15x+5-30=0\)
\(\Leftrightarrow10x^2+15x-25=0\)
\(\Leftrightarrow5\left(2x^2+3x-5\right)=0\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow2x^2-2x+5x-5=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)(tmđk)
f) \(\frac{2x-1}{21}=\frac{3}{2x+1}\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=21.3\)
\(\Leftrightarrow4x^2-1=63\)
\(\Leftrightarrow4x^2=64\)
\(\Leftrightarrow x^2=16\)\(\Leftrightarrow x^2=4^2\)\(\Leftrightarrow x=4\)
Vậy \(x=4\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
\(\Leftrightarrow\left(10x+5\right)\left(x+1\right)=5.6\)
\(\Leftrightarrow5\left(2x+1\right)\left(x+1\right)=30\)
\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)=6\)
\(\Leftrightarrow2x^2+3x+1=6\)
\(\Leftrightarrow2x^2+3x-5=0\)
\(\Leftrightarrow\left(2x^2-2x\right)+\left(5x-5\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5}{2}\end{cases}}\)
Vậy \(x\in\left\{\frac{-5}{2};1\right\}\)
\(\frac{2x-1}{21}=\frac{3}{2x+1}\)
=> (2x - 1)(2x + 1) = 63 (1)
Đặt 2x = t
Khi đó (1) <=> (t - 1)(t + 1) = 63
=> t2 + t - t - 1 = 63
=> t2 - 1 = 63
=> t2 = 64
=> t = \(\pm\)8
Khi t = 8
=> 2x = 8
=> x = 4
Khi t = -8
=> 2x = -8
=> x = -4
Vậy \(x\in\left\{4;-4\right\}\)
h) \(\frac{10x+5}{6}=\frac{5}{x+1}\)
=> (10x + 5)(x + 1) = 6.5
=> 5(2x + 1)(x + 1) = 30
=> (2x + 1)(x + 1) = 6
=> 2x2 + 2x + x + 1 = 6
=> 2x2 + 3x + 1 = 6
=>2x2 + 3x - 5 = 0
=> 2x2 - 2x + 5x - 5 = 0
=> 2x(x - 1) + 5(x - 1) = 0
=> (2x + 5)(x - 1) = 0
=> \(\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2,5\\x=1\end{cases}}\)
Vậy \(x\in\left\{-2,5;1\right\}\)
Tìm x biết ;
a, 3/7 - 1/2 x X = 5/3
b, -2X + 3/14 = 1/7 - 4/21
a. 3/7 - 1/2x = 5/3
=> 1/2x = 3/7 - 5/3
=> 1/2x = 9/21 - 15/21
=> 1/2x = -26/21
=> x = -26/21 : 1/2
=> x = -26/21.2
=> x = -52/21
b. -2x + 3/14 = 1/7 - 4/21
=> -2x = -3/14 + 1/7 - 4/21
=> -2x = -18/84 + 12/84 - 16/84
=> -2x = -22/84
=> x = -22/84 : -2
=> x = -22/84 . (-1/2)
=> x = 11/84
a. 3/7 - 1/2x = 5/3
=> 1/2x = 3/7 - 5/3
=> 1/2x = 9/21 - 15/21
=> 1/2x = -26/21
=> x = -26/21 : 1/2
=> x = -26/21.2
=> x = -52/21
b. -2x + 3/14 = 1/7 - 4/21
=> -2x = -3/14 + 1/7 - 4/21
=> -2x = -18/84 + 12/84 - 16/84
=> -2x = -22/84
=> x = -22/84 : -2
=> x = -22/84 . (-1/2)
=> x = 11/84
Tìm x, biết:
a) 52/2x-1=13/30
b) 1,2/30=3x+4/50
c) 7/5=2x+1/3x+5
d) 2x-3/x+1=21/16
e) 2x+3/6=7x-3/15
f) -0,09/x=x/-25
k) 2x+1/5=3/2x-1
Mình đang cần gấp
Ai làm nhanh nhất mình tick cho
tìm x
a, | 5/4x - 7/2 | - | 5/8x + 3/5 | = 0
b, 21/5 + 3 : | x/4 - 2/3 | = 6
c,| 9 + x | = 2x
d, | 2x - 3 | + x = 21
e, | 7 - 2x | + 7 = 2x
f, | -x + 2/5 | + 1/2 = 3,5
G, | 3x - 4 | + 4 = 3x
a) | 5/4x -7/2| - | 5/8x + 3/5| = 0
|5/4x - 7/2| = | 5/8x + 3/5|
TH1: 5/4x - 7/2 = 5/8x + 3/5
=> 5/4x - 5/8x = 3/5 +7/2
5/8x = 41/10
x = 41/10:5/8
x = 164/25
TH2: 5/4x - 7/2 = -5/8x - 3/5
=> 5/4x + 5/8x = -3/5 +7/2
15/8x = 29/10
x = 29/10 : 15/8
x = 116/75
KL: x = 164/25 hoặc x = 116/75
các bài cn lại b lm tương tự nha! h lm dài lắm!