Cho n thuộc N sao, n lớn hơn hoặc bằng 2 chứng minh 1/4^2+1/6^2+...+1/(2n)^2<1/4
Cho n thuộc N sao, n lớn hơn hoặc bằng 2 chứng minh 1/4^2+1/6^2+...+1/(2n)^2<1/4
Chứng minh rằng: 1/4^2 + 1/6^2 + 1/8^2 +...+ 1/(2n)^2 <1/4 ( n thuộc N, n lớn hơn hoặc bằng 2 )
A=1/4^2+1/6^2+...+1/(2n)^2
=1/4(1/2^2+1/3^2+...+1/n^2)
=>A<1/4(1-1/2+1/2-1/3+...+1/n-1-1/n)
=>A<1/4(1-1/n)<1/4
Cho A = 1/4^2 + 1/6^2 + ...+ 1/(2n)^2 (n thuộc N, n lớn hơn hoặc bằng 2)
Chứng minh A < 1/4
A=1/2^2(1/2^2+1/3^2+...+1/n^2)<1/4[(1/(1.2)+1/(2.3)+...+1/(n-1).n]=1/4(1-1/n) {n lon hon hoac bang 2}. Suy ra 1-1/n<0. Suy ra A<1/4
Chứng minh P=1/4^2+1/6^2+1/8^2+...+1/(2n)^2<1 (n thuộc tập hợp N;n lớn hơn hoặc bằng 3
Chứng tỏ rằng ,các số có dạng :
a, A=22n - 1 chia hết cho 5 ( n thuộc N ,n lớn hơn hoặc bằng 2)
b, B=24n +4 chia hết cho10 ( n thuộc N , n lớn hơn hoặc bằng 1)
c, H=92n +3 chia hết cho 2 ( n thuộc N , n lớn hơn hoặc bằng 1 )
Cho A=1/4 mũ 2+1/6 mũ 2+....+1/(2n)mũ 2
Với n thuộc N và n bé hơn hoặc bằng 2.Chứng minh A bé hơn 1/4
ta có: \(\frac{1}{4^2}< \frac{1}{2.4};\frac{1}{6^2}< \frac{1}{4.6};...;\frac{1}{\left(2n\right)^2}< \frac{1}{\left(2n-2\right).2n}\)
\(\Rightarrow A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2n-2\right).2n}\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
=> đ p c m
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc) ( mình
cũng bị ép);-;
CMR :
a) N = 1/4^2 + 1/6^2 + 1/8^2 + ... + 1/(2n)^2 < 1/4 ( n thuộc N ; n lớn hơn hoặc bằng 2 )
b) P = 2!/3! + 2!/4! + 2!/5! + ... + 2!/n! < 1 ( n thuộc N ; n lớn hơn hoặc bằng 3 )
a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)
Vậy \(N< \frac{1}{4}\)
b) \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)
\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)
\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)
Vậy \(P< 1\)
chứng minh rằng:
N=1/4^2+1/6^2+.............+1/(2n)^2<1/4(n thuộc N; n> hoặc bằng 2)
giải hộ minh nhé, mình tích cho
Cho a = 1+2+3+....+n và b = 2n+1 (Với n thuộc N, n lớn hơn hoặc bằng 2). Chứng minh: a và b là hai số nguyên tố cùng nhau.
Ta có : \(a=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) , b = 2n+1
Gọi ƯCLN(a,b)=d (\(d\ge1\))
Ta có : \(\begin{cases}\frac{n\left(n+1\right)}{2}⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}n\left(n+1\right)⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}4n^2+4n⋮d\\4n^2+4n+1⋮d\end{cases}\)
=> \(\left(4n^2+4n+1\right)-\left(4n^2+4n\right)⋮d\) hay \(1⋮d\)
=> \(d\le1\) mà \(d\ge1\Rightarrow d=1\)
=> đpcm
Xét n = 2k
- a = lẻ => b = chẵn
Mà chẵn lẻ tương phản, vậy suy ra được đpcm
Xét n = 2k + 1
- a = chẵn <=> b lẻ
Mà chẵn lẻ tương phản, vậy suy ra được đpcm
Vậy a và b là hai số nguyên tố cùng nhau. (với n thuộc N, n >=2)