Những câu hỏi liên quan
H24
Xem chi tiết
TL
28 tháng 4 2020 lúc 6:09

Đặt \(a=x^2;b=y^2;c=z^2\)khi đó ta được xyz=1 và biểu thức P viết được thành

\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2x^2+3}+\frac{1}{z^2+2x^2+3}\)

Ta có \(x^2+y^2\ge2xy;y^2+1\ge2y\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\)

Do đó ta được \(\frac{1}{x^2+2y^2+3}\le\frac{1}{2}\cdot\frac{1}{xy+y+1}\)

Chứng minh tương tự ta có:

\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2}\cdot\frac{1}{yz+z+1};\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot\frac{1}{zx+z+1}\)

Cộng các vế BĐT trên ta được

\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Ta cần chứng minh \(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}=1\)

Do xyz=1 nên ta được

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{zx}{z+1+zx}+\frac{x}{1+zx+z}+\frac{1}{zx+x+1}=1\)

Từ đó ta được

\(P\le\frac{1}{2}\). Dấu "=" xảy ra <=> a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết
NH
7 tháng 2 2020 lúc 22:02

theo bđt cauchy-schwarz ta có \(P\ge\frac{\left(1+1+1\right)^2}{3+2\left(a^3+b^3+c^3\right)}=\frac{9}{3+2\left(a^3+b^3+c^3\right)}\)

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3=3abc}\)\(\Rightarrow P\ge\frac{9}{3+2\cdot3abc}=\frac{9}{3+6}=1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(P_{max}=1\Leftrightarrow a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
7 tháng 2 2020 lúc 22:05

Sorry mình viết nhầm nha \(3\sqrt[3]{a^3b^3c^3}=3abc\)mới đúng nha

Bình luận (0)
 Khách vãng lai đã xóa
HV
7 tháng 2 2020 lúc 22:09

Nguyễn Gia Huy làm lộn hết dấu rồi??GTLN???

Bình luận (0)
 Khách vãng lai đã xóa
TG
Xem chi tiết
HP
30 tháng 10 2016 lúc 17:50

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)

Bình luận (0)
PA
Xem chi tiết
LD
Xem chi tiết
CN
29 tháng 3 2021 lúc 21:28

Lớn hơn hoặc bằng hay là bằng?

Bình luận (0)
 Khách vãng lai đã xóa
LD
29 tháng 3 2021 lúc 21:32

Đinh Chỉ Tịnh ≥

Bình luận (0)
 Khách vãng lai đã xóa
PN
29 tháng 3 2021 lúc 21:36

\(\frac{1}{a+1}\ge\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

tương tự rồi nhân theo vế thôi nhé đệ =))

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
AN
29 tháng 5 2017 lúc 9:11

Theo đề bài thì ta có:

\(\frac{1}{a+b+1}=1-\frac{1}{b+c+1}+1-\frac{1}{c+a+1}=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\)

\(\ge2.\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\left(1\right)\)

Tương tự ta có:

\(\hept{\begin{cases}\frac{1}{b+c+1}\ge2.\sqrt{\frac{\left(a+b\right)\left(c+a\right)}{\left(a+b+1\right)\left(c+a+1\right)}1}\left(2\right)\\\frac{1}{c+a+1}\ge2.\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\left(3\right)\end{cases}}\)

Nhân (1), (2), (3) vế theo vế ta được

\(\frac{1}{a+b+1}.\frac{1}{b+c+1}.\frac{1}{c+a+1}\ge8.\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{4}\)

Bình luận (0)

765=0

Bình luận (0)
H24
21 tháng 9 2019 lúc 10:14

sao khó hiểu vậy

Bình luận (0)
LD
Xem chi tiết
1F
Xem chi tiết
LH
Xem chi tiết
H24
8 tháng 7 2020 lúc 16:22

\(b^4+c^4-bc\left(b^2+c^2\right)=\left(b^2+bc+c^2\right)\left(b-c\right)^2\)

\(\Rightarrow b^4+c^4\ge bc\left(b^2+c^2\right)\)

Tương tự\(\Rightarrow\Sigma_{cyc}\frac{a}{a+b^4+c^4}\le\Sigma_{cyc}\frac{a}{a+bc\left(b^2+c^2\right)}=\Sigma_{cyc}\frac{a}{bc\left(a^2+b^2+c^2\right)}=\frac{1}{a^2+b^2+c^2}\Sigma_{cyc}\frac{a}{bc}\)

\(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=a^2+b^2+c^2\)

\(\Rightarrow\frac{1}{a^2+b^2+c^2}\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)=1\)

oke rồi he

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
8 tháng 7 2020 lúc 21:48

@Nub :v

Áp dụng Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+2a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự:

\(\frac{b}{a^4+c^4+b}\le\frac{b^4+2b}{\left(a^2+b^2+c^2\right)^2};\frac{c}{a^4+b^4+c}\le\frac{c^4+2c}{\left(a^2+b^2+c^2\right)^2}\)

Cộng lại:

\(A\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)

Cái này luôn  đúng theo Cauchy

Đẳng thức xảy ra tại a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa