Bài 1: So sánh phân số: \(\frac{2^{2014}+1}{2^{2014}}\) và\(\frac{2^{2014+2}}{2^{2014+1}}\)
So sánh 2 phân số: A= \(\frac{2014^{2013}+1}{2014^{2014}+1}\)và B= \(\frac{2014^{2012}+1}{2014^{2013}+1}\)
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
So sánh phân số: \(\frac{2^{2014}+1}{2^{2014}}\) và \(\frac{2^{2014}+2}{2^{2014}+1}\)
nhanh lên, mk tích!
\(\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
so sánh \(\frac{1}{2^{2014}}\) và \(\frac{1}{2^{2014}+1}\)
ta có
\(2^{2014}<2^{2014}+1\)
nên \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}=>1+\frac{1}{2014}>1+\frac{1}{2014+1}=>\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)
So sánh :
\(\frac{2^{2014}+1}{2^{2014}}\)
và \(\frac{2^{2014}+1}{2^{2014}+2}\)
ta thấy:
2^2014<2^2014+2
=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)
vậy......
Có : 22014 + 1 > 22014 nên \(\frac{2^{2014}+1}{2^{2014}}\)> 1 .
22104 + 1 < 22014 + 2 nên \(\frac{2^{2014}+1}{2^{2014}+2}\)< 1.
=> \(\frac{2^{2014}+1}{2^{2014}}\)>\(\frac{2^{2014}+1}{2^{2014}+2}\)
1 cách dễ hơn nè:
Có 22014+1 = 22014 + 1 ( tử và tử bằng nhau )
22014<22014+2
=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)
So sánh:
\(\frac{2^{2014}+1}{^{2^{2014}}}\)VÀ \(\frac{2^{2014}+2}{2^{2014+1}}\)
Đặt :
\(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}\)\(=1+\frac{1}{2^{2014}+1}\)
\(1+\frac{1}{2^{2014}}>1+\frac{1}{2^{2014}+2}\Leftrightarrow A>B\)
\(A=\frac{2^{2014}+1}{2^{2014}}B=\frac{2^{2014}+2}{2^{2014}+1}\)
So sánh
Ta có : A = \(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
B = \(\frac{2^{2014}+2}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
Vì : \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)
Nên A > B
Được thôi ban :
Ta có : \(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
Đó ok chưa
A=\(\frac{2014^{2014}+2}{2014^{2014}-1}\)và B=\(\frac{2014^{2014}}{2014^{2014}-3}\)so sánh A và B
So sánh phân số :
2^2014+1/2^2014 và 2^2014+2/2^2014+1
\(\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
\(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
Do \(2^{2014}+1>2^{2014}\Rightarrow\frac{1}{2^{2014}+1}<\frac{1}{2^{2014}}\Rightarrow1+\frac{1}{2^{2014}+1}<1+\frac{1}{2^{2014}}\Rightarrow\frac{2^{2014}+2}{2^{2014}+1}<\frac{2^{2014}+1}{2^{2014}}\)
\(\frac{^{^{2015^{2013}+1}}}{2015^{2014}+7}\)và \(\frac{2015^{2014}-2}{2015^{2015}-2}\)hãy so sánh 2 phân số đó
Đặt A= 2015^2013+1/2015^2014+7, B=2015^2014-2/2015^2015-2
2015A= 2015^2014+2015/2015^2014+7= 1 + (2008/2015^2014+7)
2015B= 2015^2015-4030/2015^2015-2= 1 - (4028/2015^2015-2)
Do 2015A>1>2015B nên A>B
so sánh phân số 2 mũ 2014 cộng 1 phần 2 mũ 2014 và 2 mũ 2014 cộng 2 phần 2 mũ 2014 cộng 1
Câu 5. (1,0 điểm)
Cho tổng A gồm 2014 số hạng: A = \(\frac{1}{19}+\frac{2}{19^2}+\frac{3}{19^3}+..........+\frac{2014}{19^{2014}}\)
Hãy so sánh A2013 và A2014.