Những câu hỏi liên quan
NL
Xem chi tiết
NT
8 tháng 1 2022 lúc 15:01

b: \(x^2-x+1=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

c: \(A=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

d: \(B=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=2

Bình luận (0)
CS
Xem chi tiết
CS
29 tháng 3 2020 lúc 22:41

cảm ơn các bạn nhiều

Bình luận (0)
 Khách vãng lai đã xóa
TY
31 tháng 3 2020 lúc 14:20

\(-\frac{1}{4}x^2+x-2\)

\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)

\(=-\left(\frac{1}{2}x-1\right)^2-1\)

Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)

Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến

Bình luận (0)
 Khách vãng lai đã xóa
TY
31 tháng 3 2020 lúc 14:23

\(\left(1-2x\right)\left(x-1\right)-5\)

\(=x-1-2x^2+2x-5\)

\(=-2x^2+3x-6\)

\(=-2\left(x^2-2\cdot\frac{3}{4}x+\frac{9}{16}\right)-\frac{39}{8}\)

\(=-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}\)

Mà \(\left(x-\frac{3}{4}\right)^2\ge0\Rightarrow-2\left(x-\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}< 0\)

Vậy \(\left(1-2x\right)\left(x-1\right)-5\) luôn nhận giá trị âm với mọi giá trị của biến

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KS
Xem chi tiết
TB
22 tháng 11 2020 lúc 20:09

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết
BT
30 tháng 10 2018 lúc 18:23

Mong mọi người giúp với, mình đang cần gấp!!! Thanks

Bình luận (0)
TK
30 tháng 10 2018 lúc 18:28

a) (x+3)^2-(x-5)(x+5)-6x

= x^2+6x+9-x^2+25-6x

= 9+25

= 94

vậy...

Bình luận (0)
TK
30 tháng 10 2018 lúc 18:32

b) ta có: 25x^2-90x+100

= (5x)^2 - 2.5x.9 + 9^2 + 19

= (5x-9)^2 + 19

vì (5x-9)^2 >= 0 và 19>0 nên...

Bình luận (0)
TT
Xem chi tiết
NT
5 tháng 11 2021 lúc 21:06

a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)

\(=3x^2-4x-26-4x^2+16\)

\(=-x^2-4x-10\)

Bình luận (0)
TM
Xem chi tiết
KN
28 tháng 1 2020 lúc 16:06

\(ĐKXĐ:x\ne-1\)

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{\left(x+1\right)\left(3x-3\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{x^3+1}\)

\(=\frac{x^3-x^2+x}{x^3+1}+\frac{3x^2-3}{x^3+1}+\frac{x+4}{x^3+1}\)

\(=\frac{x^3-x^2+x+3x^2-3+x+4}{x^3+1}\)

\(=\frac{x^3+2x^2+2x+1}{x^3+1}\)

\(=\frac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2+x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^2+x+1}{x^2-x+1}\)

Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

và \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\frac{x^2+x+1}{x^2-x+1}>0\forall xt/m\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
Xem chi tiết
CD
10 tháng 8 2016 lúc 13:12

kết bạn nhé

Bình luận (0)
MH
10 tháng 8 2016 lúc 13:19

A = -x2 + 6x - 10

= -(x2 - 6x + 10)

= -(x2 - 2.x.3 + 9 + 1)

= -(x2 - 2.x.3 + 32 +1)

= -[(x - 3)2 + 1]

Mà (x - 3)+ 1 \(\ge\)1

=> -[(x - 3)2 + 1] \(\le\)-1 \(< \)0

Vậy giá trị của A luôn âm với mọi giá trị của x.

Bình luận (0)