Tìm x,y,z thỏa
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
cho các số x, y, z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\) tìm MAX P =\(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\)
Tìm x,y,z thỏa mãn : \(\frac{x}{z+y+z}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\left(x+y+z\ne0\right)\) (nhớ chia làm 2 trg hợp nhé)
xin lỗi, chỉ có 1 trg hợp thôi
Tìm x, y, x thỏa mãn: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
tìm các số thực x, y, z thỏa mãn x + y + z = \(\frac{x}{y+z-1}=\frac{y}{z+x-2}=\frac{z}{x+y+3}\)
TH1:x+y+z=0 \(\Rightarrow x=y=z=0\)
TH2:x+y+z\(\ne0\)
Áp dụng t/c .............
Được x+y+z=1/2
Biến đổi ta được \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)
\(\frac{y+z+2}{x}=\frac{x+z+3}{y}=\frac{x+y-5}{z}=\frac{1}{x+y+z}\)
tìm x,y,z thỏa mãn
xin lỗi mk ấn nhầm
Dựa vào tính chất của dãy tỉ số bằng nhau ta có 2=1/ x+y+z => x+y+z= 1/2
Thay vào ta có y+z+2=2x và y+z=1/2-x
=> 1/2-x+2=2x => 5/2-x=2x => 3x=5/2
=> x=5/6
Tương tự tìm y và z
\(\frac{\left(y+z+2\right)+\left(x+z+3\right)+\left(x+y-5\right)}{x+y+z}=\frac{1}{x+y+z}\)
\(\frac{y+y+z+z+2+3-5+x+x}{x+y+z}=\frac{2y+2z+0+2x}{x+y+z}\)
\(\frac{2+2+2+y.z.x}{x+y+z}=\frac{6+yzx}{x+y+z}\)
1) cho x;y;z dương thỏa mãn x+y+z=2 .tìm min P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
2) cho x;y;z là các số dương sao cho \(x+y+z\ge12\)
tìm min M=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:
\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)
=>minP=1 <=> x=y=z=2/3
Cho ba số x , y , z khác 0 thỏa mãn $\frac{y+z-x}{x}$ = $\frac{z+x-y}{y}$ = $\frac{x+y-z}{z}$
Tính giá trị biểu thức P = ( 1+$\frac{x}{y}$ )( 1+$\frac{y}{z}$ )( 1+$\frac{z}{x}$ )
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
tìm các số chưa biết:
a)\(\frac{x+y+2020}{z}\)=\(\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)
b)Với \(x,y,z\ne0\)thỏa:\(\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}\)
ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
a,Sử dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)
\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+2020+y+z-2021+z+x+1}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Mà \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)
nên \(\frac{2}{x+y+z}=2\)
\(\Rightarrow x+y+z=1\)
Cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2=3\).Tìm GTNN của M=\(\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)