Những câu hỏi liên quan
SN
Xem chi tiết
BP
16 tháng 7 2023 lúc 21:28

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

Bình luận (0)
TN
Xem chi tiết
NT
15 tháng 6 2023 lúc 16:52

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

Bình luận (0)
NP
Xem chi tiết

\(2.A=\frac{2^{2021}-2}{2^{2021}-1}=1-\frac{1}{2^{2021}-1}\)

\(2B=\frac{2^{2022}-2}{2^{2022}-1}=1-\frac{1}{2^{2022}-1}\)

dó \(\frac{1}{2^{2022}-1}< \frac{1}{2^{2021}-1}\Rightarrow1-\frac{1}{2^{2022}-1}>1-\frac{1}{2^{2021}-1}\Rightarrow A< B\)

HT

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
NH
3 tháng 5 2023 lúc 14:03

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C 

 

Bình luận (0)
HL
Xem chi tiết
NT
25 tháng 6 2023 lúc 10:53

loading...

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 12 2022 lúc 21:50

Cứu với ;-;

Bình luận (0)
HS
Xem chi tiết
NH
15 tháng 4 2023 lúc 10:09

A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) ;  B = \(\dfrac{2020+2021}{2021+2022}\)

B = \(\dfrac{2020+2021}{2021+2022}\)   = \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\)

\(\dfrac{2020}{2021}\)   > \(\dfrac{2020}{2021+2022}\)

\(\dfrac{2021}{2022}\)     > \(\dfrac{2021}{2021+2022}\)

Cộng vế với vế ta có:

A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) > \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\) = B

Vậy A > B

 

Bình luận (0)
NH
15 tháng 4 2023 lúc 10:20

A =  \(\dfrac{10^{10}-1}{10^{11}-1}\) 

\(\times\) 10 = \(\dfrac{(10^{10}-1)\times10}{10^{11}-1}\) = \(\dfrac{10^{11}-10}{10^{11}-1}\) = 1 - \(\dfrac{9}{10^{11}-1}\) < 1

B = \(\dfrac{10^{10}+1}{10^{11}+1}\)

\(\times\) 10 = \(\dfrac{(10^{10}+1)\times10}{10^{11}+1}\)  = \(\dfrac{10^{11}+10}{10^{11}+1}\) = 1 + \(\dfrac{9}{10^{11}+1}\) > 1

Vì 10 A< 1< 10B

Vậy A < B

 

Bình luận (0)
ND
Xem chi tiết
AH
29 tháng 4 2022 lúc 1:05

Lời giải:

$6A=\frac{6^{2021}+6}{6^{2021}+1}=1+\frac{5}{6^{2021}+1}>1+\frac{5}{6^{2022}+1}$
$=\frac{6^{2022}+6}{6^{2022}+1}=6.\frac{6^{2021}+1}{6^{2022}+1}=6B$

$\Rightarrow A>B$

Bình luận (0)
AD
Xem chi tiết
HP
27 tháng 3 2022 lúc 21:53

Bạn kiểm tra đề giúp mình! Bạn yêu cầu gì về giả thiết trên?

Bình luận (0)