tìm số nguyên tố n sao cho n-7 chia hết cho 2n+3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Tìm số tự nhiên n sao cho 4n + 7 chia hết cho 2n + 1 b) Tìm số nguyên tố P sao cho P + 8 và P + 16 cũng là số nguyên tố
a) 4n + 7 chia hết cho 2n + 1
⇒ 4n + 2 + 5 chia hết cho 2n + 1
⇒ 2(2n + 1) + 5 chia hết cho 2n + 1
⇒ 5 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(5) (ước dương)
⇒ 2n + 1 ∈ {1; 5}
⇒ n ∈ {0; 2}
a) Tìm các stn n sao cho 2n+15 chia hết cho n+3
b) Tìm số nguyên tố p và q sao cho 7p+q va p.q+11 là số nguyên tố
Tìm số nguyên n sao cho a,2n-7 chia hết cho n+3 b, n+5 chia hết cho 2n-1 c, n-8 chia hết cho n+1
a/ Ta có: 2n-7=2n+6-13=2(n+3)-13
Nhận thấy, 2(n+3) chia hết cho n+3 với mọi n
=> Để 2n-7 chia hết cho n+3 => 13 chia hết cho n+3
=> n+3=(-13,-1,1,13)
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
b, n+5 chia hết cho 2n-1 => 2(n+5) chia hết cho 2n-1 => 2n+10 chia hết cho 2n-1
2n-1 chia hết cho 2n-1
=>2n+10-(2n-1) chia hết cho 2n-1
=>2n+10-2n+1 chia hết cho 2n-1
=>11 chia hết cho 2n-1
=>2n-1 E Ư(11)={1;-1;11;-11}
=>n E {1;0;6;-5}
a) 2n-7 chia hết cho n+3
=> 2n+6-13 chia hết cho n+3
=> 2(n+3)-13 chia hết cho n+3
=> 2(n+3) chia hết cho n+3 ; 13 chia hết cho n+3
=> n+3 thuộc Ư(13)={-1,-13,1,13}
Ta có bảng :
n+3 | -1 | -13 | 1 | 13 |
n | -4 | -16 | -2 | 10 |
vậy n={-18,-16,-4,10}
b) Như ST làm
c) n-8 chia hết cho n+1
=> n+1-9 chia hết cho n+1
=> n+1 chia hết cho n+1 ; 9 chia hết cho n+1
=> n+1 thuộc Ư(9)={-1,-3,-9,1,3,9}
=> n={-2,-4,-10,0,2,8}
1, tìm số tự nhiên N sao cho 3n+7 chia hết cho n+1
2, tìm số nguyên n sao cho 2n+ 3/3n+
\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)
* Tìm \(n\in N\)để:
a) n + 5 chia hết cho n + 2
b) 3n + 1 chia hết cho 11 - 2n
c) 4n + 7 chia hết cho 2n + 1
d) 6n + 9 chia hết cho 4n + 3
* Cho p và p + 8 đều là số nguyên tố (p > 3)
Hỏi p + 100 là số nguyên tố hay hợp số ?
\(a,\left(n+5\right)⋮\left(n+2\right)\)
\(\left(n+2+3\right)⋮\left(n+2\right)\)
\(\Rightarrow3⋮\left(n+2\right)\)
\(\Rightarrow n+2\in\left(1;-1;3;-3\right)\)
\(\Rightarrow n\in\left(-1;-3;1;-5\right)\)
b,c,d Tự làm
* Do p > 3 , mà một số > 3 khi chia cho 3 có hai trường hợp xảy ra : 3k + 1 ; 3k + 2.(k thuộc N)(ko lấy 3k vì 3k là hợp số)
Với p = 3k + 1
=> p + 8 = 3k + 1 + 8 = 3k + 9 ko phải là SNT
Với p = 3k + 2
=> p + 8 = 3k + 10 là SNT
=> p + 100 = 3k + 2 + 100 = 3k + 102 là hợp số .
Vậy p + 100 là hợp số
1.Chứng minh rằng các số sau đây là nguyên tố cùng nhau:
a) 2n+1 và 2n+3
b) 2n+5 và 3n+7
2.Tìm số tự nhiên n sao cho 4n+3 chia hết cho 2n+1.
1.a) goi d la uoc chung cua 2n+1 va 2n+3
Suy ra 2n+1 chia het cho d va 2n+3 chia het cho d
Suy ra (2n+3)-(2n+1) chia het cho d
Suy ra 2 chia het cho d
MA d la uoc cua mot so le nen d=1
VAy 2n+1 va 2n+3 la so nguyen to cung nhau.
b) Goi d la uoc chung cua 2n+5 va 3n+7
Suy ra 2n+5 chia het cho d va 3n+7 chia het cho d
Suy ra 3(2n+5)-2(3n+7) chia het cho d
Suy ra 6n+15-6n-14 chia het cho d
Suy ra 1 chia het cho d
Suy ra d=1
Vay 2n+5 va 3n+7 la so nguyen to cung nhau.
Cau 2)
Vi 2n+1 luon luon chia het cho 2n+1
Suy ra 2(2n+1) chia het cho 2n+1
Suy ra 4n+2 chia het cho 2n+1(1)
Gia su 4n+3 chia het cho 2n+1 (2)
Tu (1) va (2) suy ra (4n+3)-(4n+2) chia het cho 2n+1
suy ra 1 chia het cho 2n+1
suy ra 2n+1 =1
2n=0
n=0
Vay n=0 thi 4n+3 chia het cho 2n+1.
tìm số nguyên n sao cho
a, n+12 chia hết cho n+7
b, n-6 chia hết cho n +4
c, 3n+2 chia hết cho n-1
d,n^2+2n-7 chia hết cho n-2
e, 4n+3 chia hết cho 2n-1
Tìm số nguyên n sao cho:
a) n + 17 chia hết cho n + 2
b) 2n + 18 chia hết cho n + 3
c) n + 1 là ước của 2n + 7.
a,
thì bn lập luận
n+2 và n+ 17 đều chia hết cho n+2
=> ( n+17)-(n+2) chia hết cho n+2
=> 15 chia hết cho n+2
=> n+ 2 thuộc ước của 15
b, câu này thì bn nhân n+ 3 với 2 rồi trừ di như câu a nhé
c, thì nhân n+1 với 2
thế nhé !!!!
Phân tích ra là được mà bạn.
a, n+17=(n+2)+15
Để n+17 chia hết cho n+2=>15 chi hết cho n+2
=> n+2 thuộc U(15)
tìm ước của 15 rooif lâp bảng là được mà
Phần b làm tương tự còn phần c có nghĩa là mình CM được 2n-7 chia hết cho n+1 là ok.
Tìm số nguyên n sao cho
a) (2n^3 + n^2 + 7n + 1) chia hết cho 2n-1
b)(n^3 - 2) chia hết cho n-2
c)(n^3 - 3n^2 - 3n -1) chia hết cho n^2 + n + 1
d)((n^4 - 2n^3 = 2n^2 - 2n + 1) chia hết cho n^4 - 1
e)(n^3 - n^2 + 2n + 7) chia hết cho n^2 + 1