Những câu hỏi liên quan
DH
Xem chi tiết
PN
Xem chi tiết
H24
20 tháng 10 2016 lúc 16:53

cách giải

lời giải luôn 

1/ a=5k+2; b=5n+3 

(ab là a nhân b nếu là ab xẽ khác)

(5k+2)(5n+3)=25k.n+3.5.k+10n+6=5(5k.n+3k+2.n+1)+1 vây ab chia 5 dư 1

2/ a=7k+3

a62=7.7.k^2+2.3.7k+9=7(7k^2+6k+1)+2 vậy a^2 chia 7 dư 2

Bình luận (0)
NL
17 tháng 8 2016 lúc 20:59

1) dư 1

2)dư 2 k mình nha

Bình luận (0)
OP
17 tháng 8 2016 lúc 21:21

1, dư 1

b, dư 2

Bình luận (0)
KT
Xem chi tiết
H24
2 tháng 1 2019 lúc 20:12

mk chỉ làm đc câu a) bài 1 thôi nha !

Bài 1 .

Ta có :

 a) A = (2+22)+(23+24)+...+299+2100

=> A = (1+2).21+(1+2).23+...+(1+2).299

=> A = 3.(21+23+...+299\(⋮\)3

=> A \(⋮\)3

Bình luận (0)
NT
Xem chi tiết
H24
29 tháng 1 2016 lúc 9:58

Câu 9 đáp số là : 1

câu 10 đáp số là 1

Bình luận (0)
TH
29 tháng 1 2016 lúc 9:59

câu 9 : dư 5

câu 10 : dư 1

Bình luận (0)
H24
29 tháng 1 2016 lúc 10:01

câu 9 dư 1 ( ví dụ 7 : 2 = 3 dư 1 ; 7 : 6 = 1 dư 1 )

Bình luận (0)
NM
Xem chi tiết
NO
14 tháng 8 2017 lúc 19:27

839. Mk nghĩ vậy, nếu bn cần trình bày rõ ràng thì bn đáp lại nhá!!!

Bình luận (0)
NM
14 tháng 8 2017 lúc 19:44

bạn Nguyễn Hoài Oanh ơi đầy đủ hơn nhé bạn.

Bình luận (0)
B1
14 tháng 8 2017 lúc 20:59

Gọi a là số cần tìm. 
a chia 6 dư 5 nên a + 1 chia hết cho 6 
a chia 5 dư 4 nên a + 1 chia hết cho 5 
a chia 4 dư 3 nên a + 1 chia hết cho 4 
a chia 3 dư 2 nên a + 1 chia hết cho 3 
a chia 2 dư 1 nên a + 1 chia hết cho 2 
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên: 
a + 1 = 60 
a = 60 - 1 
a = 59 
Số cần tìm là 59

dúng ko bn

Bình luận (0)
HL
Xem chi tiết
H9
29 tháng 10 2023 lúc 9:00

a) \(A=1+2+2^2+...+2^{41}\)

\(2A=2+2^2+...+2^{42}\)

\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)

\(A=2^{42}-1\)

b) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)

\(A=3+2^2\cdot3+...+2^{40}\cdot3\)

\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)

Vậy A ⋮ 3

__________

\(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)

\(A=7+...+2^{39}\cdot7\)

\(A=7\cdot\left(1+..+2^{39}\right)\)

Vậy: A ⋮ 7

c) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)

\(A=5\cdot\left(1+2+...+2^{39}\right)\)

A ⋮ 5 nên số dư của A chia cho 5 là 0 

Bình luận (1)
NH
29 tháng 10 2023 lúc 9:55

         A = 1 + 2 + 22 + 23 + ... + 241

       2A =  2 + 22 + 23 + 24 +...+ 242

a, 2A - A = 2 + 22 + 23 + 24+...+ 242 - (1 + 2 + 22 + 23 + ... + 241)

      A   = 2 + 22 + 23 + 24 +...+242 - 1 - 2 - 22 - 23 -...- 241

     A  =   242 - 1

b, A = 1 + 2 + 22 + 23 + ... + 241

    A = 20 + 21 + 22 + 23 + ... + 241

Xét dãy số: 0; 1; 2;...; 41 dãy số này có: (41- 0):1 + 1 = 42 (số hạng)

Vậy A có 42 hạng tử. Nhóm hai số hạng liên tiếp của A với nhau thành một nhóm, vì 42: 2 = 21 nên

A = (20 + 21) + (22 + 23) +...+ (240 + 241)

A = 3 + 22.(1 + 2) +...+ 240.(1 + 2)

A = 3 + 22. 3 +...+ 240. 3

A = 3.(1 + 22 + ... + 240)

Vì 3 ⋮ 3 nên A = 3.(1 + 22 + ... + 240) ⋮ 3 (1)

Vì A có 42 hạng tử mà 42 : 3 = 14 vậy nhóm ba hạng tử liên tiếp của A thành 1 nhóm ta được: 

A = (1 + 2 + 22) + (23 + 24 + 25) +...+ (239 + 240 + 241)

A = 7 + 23.(1 + 2 + 22) +...+ 239.(1 + 2 + 22)

A = 7 + 23.7 +...+ 239.7

A = 7.(1 + 23 +...+ 239)

Vì 7 ⋮ 7 nên A = 7.(1 + 23+...+ 239)⋮ 7 (2)

Kết hợp (1) và (2) ta có: A ⋮ 3; 7(đpcm)

c, A = 242 - 1

    A = (24)10.22 - 1

   A = \(\overline{...6}\)10.4 - 1

  A = \(\overline{..4}\) - 1

  A = \(\overline{...3}\) 

 Vậy  A : 5 dư 3 

             

 

    

Bình luận (0)
DM
Xem chi tiết
WH
21 tháng 3 2018 lúc 14:02

\(A=2+2^2+2^3+...+2^{100}\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(A=2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(A=2\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)

\(A=2.7+...+2^{98}.7\)

\(A=7.\left(2+...+2^{98}\right)\)

\(\Rightarrow A⋮7\)

Vậy A:7 dư 0

Bình luận (0)
BH
21 tháng 3 2018 lúc 14:11

Ta có: A-2 = 22+23+...+2100

Tổng số số hạng của (A-2) là (100-2+1)=99 (số hạng)

Nhóm 3 số hạng liên tiếp với nhau ta được:

A-2 = (22+23+24)+(25+26+27)+...+(298+299+2100)

<=> A-2 = 22(1+2+22)+25(1+2+22)+...+298(1+2+22)

=> A-2 = 7.(22+25+...+298)

Như vậy, A-2 chia hết cho 7

=> A chia cho 7 dư 2

Bình luận (0)
PU
21 tháng 3 2018 lúc 20:50

A=2+2^2+2^3+...+2^100

2A=2.(2+2^2+2^3+...+2^100)

2A=2^2+2^3+2^4+...+2^101

2A-A=(2^2+2^3+2^4+...+2^101)-(2+2^2+2^3+...+2^100)

A=2^101-2

Bình luận (0)
NL
Xem chi tiết
MP
21 tháng 9 2017 lúc 6:05

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)\(100\) số hạng

\(100⋮2;4;5\)\(100⋮̸3\)

ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\) (vì \(100⋮2\) )

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3=3.\left(2+2^3+...+2^{99}\right)⋮3\)

vậy \(A\) chia hết cho \(3\) (1)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮4\) )

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=2\left(1+2+4+8\right)+2^5\left(1+2+4+8\right)+...+2^{97}\left(1+2+4+8\right)\)

\(=2.15+2^5.15+...+2^{97}.15=15.\left(2+2^5+...+2^{97}\right)⋮15\)

vậy \(A\) chia hết cho \(15\) (2)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2^1+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮5\) )

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1+2+4+8+16\right)\)

\(=2.31+2^6.31+...+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)⋮31\)

vậy \(A\) chia hết cho \(31\) (3)

* ta có : \(A=2^1+2^2+2^3+...+2^{99}+2^{100}\)

\(=2^1+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\) (vì \(100⋮̸3\) )

\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(=2+2^2\left(1+2+4\right)+...+2^{98}\left(1+2+4\right)\)

\(=2+2^2.7+...+2^{98}.7=2+7\left(2^2+...+2^{98}\right)\)

ta có : \(7\left(2^2+...+2^{98}\right)⋮7\) nhưng \(2⋮̸7\)

vậy \(A\) không chia hết cho \(7\) và số \(2< 7\)

nên số 2 là số dư khi \(A\) chia cho \(7\) (4)

từ (1);(2);(3) và (4) \(\Rightarrow\) (ĐPCM)

Bình luận (1)
LN
Xem chi tiết