Những câu hỏi liên quan
NL
Xem chi tiết
TA
Xem chi tiết
NT
5 tháng 11 2016 lúc 18:33

a)n+4 chia hết cho n+1

 n+4=n+1+3

=>n+1+3 chia hết cho n+1

=>n+1 chia het cho n+1

=>3 chia hết cho n+1

mà 3 chia hết cho 1;3

n+1 n 1 0 3 2

vay n=0;2

Bình luận (0)
SA
Xem chi tiết
VV
16 tháng 7 2016 lúc 12:10

a) Theo đầu bài ta có:
\(\orbr{\begin{cases}\frac{n}{n+1}=\frac{n\left(n+4\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}\\\frac{n+1}{n+4}=\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\end{cases}}\)
Nếu \(n=0\Rightarrow2n=0< 1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}< \frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}< \frac{n+1}{n+4}\)
Nếu \(n\ge1\Rightarrow2n\ge2>1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}>\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}>\frac{n+1}{n+4}\)

Bình luận (0)
ND
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NM
14 tháng 12 2021 lúc 19:54

\(\Rightarrow n-1+5⋮n-1\\ \Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow n=6\left(n>2\right)\)

Bình luận (0)
PL
Xem chi tiết
TT
28 tháng 7 2023 lúc 15:44

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

Bình luận (0)
NT
28 tháng 7 2023 lúc 15:45

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

Bình luận (0)
NT
28 tháng 7 2023 lúc 15:53

Bài 2

\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.

Bình luận (0)
TA
Xem chi tiết
H24
25 tháng 12 2020 lúc 12:30

đáp án:

n2+2n−6⋮n+4n2+2n−6⋮n+4 

→n2+4n−2n−6⋮n+4→n2+4n−2n−6⋮n+4 

→n(n+4)−2n−6⋮n+4→n(n+4)−2n−6⋮n+4 

Mà n(n+4)⋮n+4n(n+4)⋮n+4 

→−2n−6⋮n+4→−2n−6⋮n+4

→−2n−8+2⋮n+4→−2n−8+2⋮n+4

→−2(n+4)+2⋮n+4→−2(n+4)+2⋮n+4 

Mà −2(n+4)⋮n+4−2(n+4)⋮n+4 

→2⋮n+4→2⋮n+4

→n+4∈Ư(2)=1;2→n+4∈Ư(2)=1;2

→n∈{−3;−2}→n∈{-3;-2}

Mà n∈Nn∈ℕ

→n∈∅

Bình luận (0)
VH
Xem chi tiết
NH
14 tháng 12 2022 lúc 21:29

A= 3 + 32 + 33 + ... + 3100

3A = 32 + 33 + 34 + ... + 3101

3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)

2A = 3101 - 3

Ta có: 2A + 3        = 34n+1

       = 3101 - 3 + 1 = 34n+1

       = 3101               = 34n+1

=> 4n + 1 =101

      4n = 101 - 1

     4n = 100

       n = 100 : 4

       n = 25

Bình luận (0)
NH
14 tháng 12 2022 lúc 21:33

         A   = 3 + 32 + 33 + 34 +......+ 3100

        3A =       32 + 33 + 34+.........+ 3100+ 3101

  3A -  A =        3101 - 3

       2A  =         3101 - 3 

   2A + 3 = 3101 - 3 + 3 = 3101

    2A + 3  = 34n+1 ⇔ 3101 = 34n+1

                                   101 = 4n + 1

                                     4n = 101  - 1

                                     4n  = 100

                                       n = 100 : 4

                                       n = 25

Bình luận (0)
DH
14 tháng 12 2022 lúc 21:41

A= 3 + 32 + 33 + ... + 3100

3A = 32 + 33 + 34 + ... + 3101

3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)

2A = 3101 - 3

Ta có: 2A + 3        = 34n+1

       = 3101 - 3 + 1 = 34n+1

       = 3101               = 34n+1

=> 4n + 1 =101

      4n = 101 - 1

     4n = 100

       n = 100 : 4

       n = 25

Bình luận (0)