cho tam giác ABC vuông tại A. Các đường trung trực của AB;Ac cắt nhau tại D. a) cm D;B;C thẳng hàng.: b) D là trung điểm của BC; c) 2 đường trung trực của AB; AC vuông góc với nhau tại D
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
1)CHO TG ABC VUÔNG TẠI A.VẼ AH VUÔNG VỚI BC TẠI H.TIA PHÂN GIÁC GÓC HAB CẮT BC TẠI D.TIA PHÂN GIÁC GÓC HAC CẮT BC TẠI E.
CM: GIAO ĐIỂM CÁC ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC ABC LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC ADE.
2)CHO TAM GIÁC ABC CÓ AC>AB.TRÊN CA LẤY E SAO CHO CE=AB.CÁC ĐƯỜNG TRUNG TRỰC CỦA BE VÀ AC CẮT NHAU TẠI O.
CM:A)TAM GIÁC AOB=TAM GIÁC AOC
B)AO LÀ TIA PHÂN GIÁC CỦA GÓC BAC
3)CHO TAM GIÁC ABC ĐỀU.TRÊN AB,BC,AC LẤY CÁC ĐIỂM D,E,F SAO CHO AD=BE=CF.
CM:A)TAM GIÁC DEF ĐỀU.
B)GỌI O LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC ABC.CM:Ó CŨNG LÀ GIAO ĐIỂM CÁC ĐƯỜNG TRUNG TRỰC CỦA TAM GIÁC DEF
mau lên giùm mình đê các bạn ơi.mau,mau đê
Cho tam giác ABC, trực tâm H. Đường vuông góc với AB tại B, đường vuông góc với AC tại C cắt nhau ở D. Gọi O là trung điểm của AD, M là trung điểm của BC. Chứng minh rằng:
a, O là giao điểm của các đường trung trực của tam giác ABC
b, AH=2MO
a) kẻ OF vuông góc với AB; OE vuông góc với AC
theo dịnh lí duong TB tam giác => F là trung điểm AB, E là trug điểm AC => OF, OE là đường trung trực của ABC=> O ...............
b) HD: Chứng minh D,M, H thẳng hàng , theo định lí đường TB của tam giác => M là trung điêm của DH=> OM=1/2 AH=> dpcm
cho tam giác abc vuông tại A. các đường trung trực của các cạnh AB, AC cắt nhau tại D. CM: D là trung điểm của BC
Cho tam giác ABC vuông tại A đường cao AH Đường trung tuyến AM
a) Hãy chỉ ta các điểm là trọng tâm ,trực tâm giữa 3 đường trung trực của tam giác ABC
b) cho AB=16 cm AC=12 cm Tính AH;AM;MH
Cho tam giác ABC cân tại A có =120°. Các đường trung trực của AB và AC cắt BC tại E và F. Tam giác AEF là tam giác gì? A.Tam giác cân B.Tam giác đều C.Tam giác vuông D.Tam giác vuông cân
Cho tam giác ABC vuông tại A, AB < AC. Đường trung trực của đoạn thẳng AB cắt BC tại I.
a)CM tam giác AIB và tam giác AIC là các tam giác cân.
b)Từ I kẻ đường thẳng vuông góc với BC, cắt tia BA và AC tại M và N, tia BN cắt CM tại E. CM EB vuông góc với MC.
c)CM EA song song với BC.
a,
Ta có :
Δ ABC vuông tại A
Mà AI là đường trung tuyến của BC
=> AI = BI = IC
Xét Δ AIB, có :
AI = BI (cmt)
=> Δ AIB cân tại A
Xét Δ AIC, có :
AI = AC (cmt)
=> Δ AIC cân tại I