tính tổng các số hạng của dãy số cách đều
1,4,7,10,13,.....55, 58
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tính tổng các số hạng của dãy số cách đều : 1,4,7,10,13.......55,58
(xin giải chi tiết giùm)
khoảng cách: 4-1=3
số các số hạng : (58-1):3+1=20
tổng các số hạng : (58+1).20:2 =590
số các số hạng là:
(58-1):3+1=20(số)
tổng các số hạng là:
(58+1)x20:2=590
đáp số 590
cho dãy số:1,4,7,10,13,......,97,100
a)đãy này có bao nhiêu số hạng?
b)tính tổng các số hạng đó
a: Số số hạng là (100-1):3+1=34(số)
b: Tổng là (100+1)x34:2=1717
$#Shả$
`a)` Có số số hạng `:`
`(100+1)/3+1=34(sh)`
`b)` Tổng dãy số hạng đó là `:`
`((100+1)xx34)/2=1717`
Đáp số `:...`
a) Cho dãy số cách đều 2,5,8,11,.... Tính tổng của 100 số hạng đó
b) Cho dãy số cách đều 1,6,11,16,... Tính tổng của 50 số hạng đó
a) số cuối của dãy số là:
2 + ( 100 -1 ) x ( 5 - 2 ) = 299
tổng của dãy số là:
( 299 + 2 ) : 2 x 100 = 15050
b) số cuối của của số là:
1 + ( 50 - 1 ) x 5 = 246
tổng của dãy số trên là:
( 246 + 1 ) x 50 : 2 = 6175
Cho dãy số viết theo quy luật: 1,4,7,10,13,....
a, Tìm số hạng thứ 24 của dãy số?
b, Tính nhanh tổng dãy số vừa viết được
Quy luật:
Mỗi số hạng cách nhau 3 số hạng
Số thứ nhất là 1
Số thứ 2 là 4
Số thứ 3 là 7
......
Số thứ 24 là 70
b) Đợi mik suy nghĩ nha
tính số hạng của dãy số cách đều rồi tính tổng các số hạng của dãy số : 3;5;7;........;2007
tôi cần gấp nhé
Số số hạng của dãy số là
\(\left(2007-3\right)\div2+1=1003\)số
Hok Tốt !!!!!!!!!!!!!!!!
số sôs hạng là
(2007-3) : 2 +1=669
tổng là:
(3+2007) x 669 /2=672345
Bài làm :
Dãy số trên có số số hạng là :
\(\left(2007-3\right)\div2+1=1003\left(\text{số hạng}\right)\)
Tổng các số hạng là :
\(\frac{\left(2007+3\right)\times1003}{2}=1008015\)
1. Hãy viết 55 thành tổng của các số tự nhiên liên tiếp.
2.Cho dãy số gồm 11 số hạng có tổng là 176. Biết hiệu của số hạng đầu tiên và số hạng cuối cùng là 30. Hãy viết dãy số đó.
3.Cho dãy số tự nhiên. Các số đó đều có tận cùng là 2. Các số đó chia hết cho 4. Tìm số hạng thứ 112 rồi tính tổng.
4.Tinhs tổng 50 số hạng đầu tiên của dãy sau;2, 6, 12, 20, 30, ...
1. 55= 1+2+3+...+9+10
2. 1,2,3,...30,31
1. Hãy viết 55 thành tổng của các số tự nhiên liên tiếp. 2.Cho dãy số gồm 11 số hạng có tổng là 176. Biết hiệu của số hạng đầu tiên và số hạng cuối cùng là 30. Hãy viết dãy số đó. 3.Cho dãy số tự nhiên. Các số đó đều có tận cùng là 2. Các số đó chia hết cho 4. Tìm số hạng thứ 112 rồi tính tổng. 4.Tinhs tổng 50 số hạng đầu tiên của dãy sau;2, 6, 12, 20, 30, ...
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
a) Cho dãy số cách đều 2,5,8,11,.... Tính tổng của 100 số hạng đó
b) Cho dãy số cách đều 1,6,11,16,... Tính tổng của 50 số hạng đó
a. số thứ 100 của dãy là : 2 + 99x3 =299
tổng của 100 số hạng là : \(100\times\frac{2+299}{2}=15050\)
b. số hạng thứ 50 của dãy là : 1+49*5 =246
tổng của 50 số hạng là : \(50\times\frac{1+246}{2}=6175\)
Cho dãy số:1,4,7,10,13...
a,Hãy tính tổng của 100 số hạng đầu tiên trong dãy số trên.
b,Tìm chữ số thứ 2020 trong dãy số trên.
a) Số hạng thứ 100 trong dãy số là : \(100\times3+1=301\)
Tổng 100 số hạng đàu tiên của dãy số là : \(\frac{\left(301+1\right)\times100}{2}=\frac{302\times100}{2}=\frac{30200}{2}=15100\)
b) Chữ số thứ 2020 tỏng dãy số trên là : \(2020\times3+1=6060+1=6061\)