giai phuong trinh
x2(x+2)2+4x2=12(x+2)2
cho phuong trinh x^2+2(m-1)x-4m=0(1) . a giai phuong trinh voi m=2 b tim m de phuong trinh (1) co hai nghiem phan biet x1,x2 va x1,x2 la hai so doi nhau
a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:
\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)
\(\Leftrightarrow x^2+2x-8=0\)(1)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)
Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)
b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)
\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)
\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)
\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)
Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)
\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)
\(\Leftrightarrow-2m+2-2m+2=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow-4m=-4\)
hay m=1
Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau
a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi
b, Để PT có 2 nghiệm PB thì
Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)
⇔Δ=(2m−2)^2+16>0∀m
Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1
Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1
cho phuong trinh \(x^2-\left(m+2\right)x+2m=0\left(1\right)\)
a, giai phuong trinh voi m=-1
b, tim m de phuong trinh (1) co 2 nghiem x1;x2 thoa man
\(\left(x_1+x_2\right)^2-x_1.x_2< 5\)
a. vs m=-1 ,thay vào pt(1) ,ta đc :
x^2 -(-1+2)x +2.(-1) =0
<=>x^2 -x-2 =0
Có : đenta = (-1)^2 -4.(-2) =9 >0
=> căn đenta =căn 9 =3
=> X1 =2 ; X2=-1
Vậy pt (1) có tập nghiệm S={-1;2}
CHO MINH HOI VS
x^2 - 2x -3m^2 = 0 voi m la tham so
1) giai phuong trinh khi m=1
2) tim tat ca gia tri cua m de phuong trinh co 2no x1,x2 khac 0 thoa dieu kien x1/x2 - x2/x1 = 8/3
Ta có : x2 - 2x - 3m2 = 0
Tại m = 1 thì pt trở thành :
x2 - 2x - 3.12 = 0
<=> x2 - 2x - 3 = 0
<=> x2 - 3x + x - 3= 0
<=> x(x - 3) + (x - 3) = 0
<=> (x - 3)(x + 1) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
Giai phuong trinh: \(\sqrt{x^2+12}+17=9x+\sqrt{x^2+5}.\)
giai phuong trinh
\(\dfrac{6}{x^2+2}+\dfrac{12}{x^2+8}=3-\dfrac{7}{x^2+3}\)
giai phuong trinh
\(\left(2x-1\right)^2=12\sqrt{x^2-x-2}-1\)
Giai phuong trinh : (x2_1)2+4(x-1)2=12.(x+1)2
pt <=> x4-2x2+1+4x2-8x+4=12x2+24x+12
<=> x4=10x2+32x+7
<=> x4+6x2+9=16x2+32x+16
<=> (x2+3)2=16(x+1)2
<=> x2+3=4(x+1) (1) hoac x2+3=-4(x+1) (2)
(1) <=> x2-4x-1=0 <=> \(x=2+\sqrt{5}\)hoac \(x=2-\sqrt{5}\)
(2) <=> x2+4x+7=0 pt vo nghiem
Vay: pt co nghiem \(x=2+\sqrt{5}\)hoac \(x=2-\sqrt{5}\)
cho phuong trinh:\(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
a/tim dieu kien cua x de phuong trinh co nghia
b/giai phuong trinh
a: ĐKXĐ: x>=0
b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)
\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)
\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)
\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)
=>\(x\in\left\{0;1.2996\right\}\)
giai phuong trinh: 3x(x+2)=(x+2)^2
\(3x\left(x+2\right)=\left(x+2\right)^2\\ \Leftrightarrow3x\left(x+2\right)-\left(x+2\right)^2=0\\ \Leftrightarrow\left(x+2\right)\left(3x-x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{-2;1\right\}\)
\(3x\left(x+2\right)=\left(x+2\right)^2\\ \Leftrightarrow3x\left(x+2\right)=\left(x+2\right)\left(x+2\right)\\ \Leftrightarrow3x\left(x+2\right)-\left(x+2\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(3x-\left(x+2\right)\right)=0\\ \Leftrightarrow\left(x+2\right)\left(3x-x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy : \(S=\left\{-2,1\right\}\)