Chứng minh nếu u+2/u-2=v+3/v-3 thì u/3=v/2
chứng minh rằng nếu: U+2/u-2=v+3/v-3 thì u/3=v/2
Chứng minh rằng nếu\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)thìu/3=v/2
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
<=> \(\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)
<=> \(uv+2v-3u-6=uv-2v+3u-6\)
<=> \(2v-3u=3u-2v\)
<=> \(2v+2v=3u+3u\)
<=> \(4v=6u\)
<=> \(2v=3u\)
<=> \(\frac{u}{2}=\frac{v}{3}\)
Ta có:
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
\(\Leftrightarrow\left(u+2\right)\left(v-3\right)=\left(u-2\right)\left(v+3\right)\)
Mình thấy bài này hay nên đưa lên đây! Các bạn thử giải nha!
Chứng minh rằng nếu: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
thì \(\frac{u}{2}=\frac{v}{3}\)
\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{\left(u+2\right)-\left(u-2\right)}{\left(v+3\right)-\left(v-3\right)}=\frac{4}{6}=\frac{2}{3}\)
\(\Rightarrow\frac{u+2}{v+3}=\frac{2}{3}=\frac{u+2-2}{v+3-3}=\frac{u}{v}\Rightarrow\frac{u}{v}=\frac{2}{3}\)
Cách của bạn kia là cách chứng minh tương đương.Mình nghĩ nó ko hay cho lắm vì phải dựa vào đpcm mà suy luận.
Mình lí luận ngược nha :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{u}{2}=\frac{v}{3}\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\Rightarrow\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
U3 >=V2. Chứng minh
\(\sqrt{\frac{u-8\sqrt[6]{u^3v^2+4\sqrt[3]{v^2}}}{\sqrt{u}—2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)
mình có sửa lại đề 1 chút!
đặt \(T=\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)
đặt \(u=a^4;v=b^6\)(a,b>0) ta có
\(T=\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}=\frac{a^4-8a^2b^2+4b^2}{a^2-2b^2+2ab}+3b^2\)
vậy \(T=\frac{a^4-8a^2b^2+4b^4}{a^2-2b^2+2ab}+3b^2=\frac{a^4-5a^2b^2-2b^4+6ab^3}{a^2-2b^2+2ab}=a^2-2ab+b^2\)
từ đó suy ra \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}\)
vì \(u^3\ge v^2\)nên \(\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}=\sqrt[4]{u}\)
\(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)
với u=1 ta có \(T=\sqrt{\frac{1-8\sqrt[6]{v^2}+4\sqrt[3]{v^2}}{1-2\sqrt[3]{v}+2\sqrt[6]{v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}\)
nếu \(1-2\sqrt[3]{v}+2\sqrt[6]{v}=0\)thì \(\sqrt[3]{v}=\frac{3+1}{2}>0\)
do \(v^2>1=u^3\), mâu thuẫn suy ra \(1-2\sqrt[3]{v}+2\sqrt[6]{v}\ne0\)
tóm lại với \(u^3\ge v^2\)và u,v\(\inℚ^+\)để \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)cần và đủ là u=1 và v<1, v\(\inℚ^+\)được lấy tùy ý
CMR nếu \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\) thì \(\frac{u}{3}=\frac{v}{2}\)
giúp mk vs
Chứng minh các bất đẳng thức sau:
a/ Nếu x2 + y2 = u2 + v2 thì |x(u+v) + y(u-v)| \(x <= \sqrt{2}\)
nvfbccxvxhgđggcftg;k/mk[',ươp'.kl,oklk=jtyh-
Chứng minh các bất đẳng thức sau:
a/ Nếu x2 + y2 = u2 + v2 thì |x(u+v) + y(u-v)| <=√2
\(\left|x\left(u+v\right)-y\left(u-v\right)\right|^2\le\left(x^2+y^2\right)\left[\left(u+v\right)^2+\left(u-v\right)^2\right]=1\cdot\left(2u^2+2v^2\right)=2\)
\(\Rightarrow\left|x\left(u+v\right)-y\left(u-v\right)\right|\le\sqrt{2}\)
@Hải Ngọc Cảm ơn câu trả lời của bạn, nhưng ở đoạn đầu bạn nhầm dấu cộng thành dấu trừ rồi! :))
*Minh khong ro đề bài có đúng thế này không
1+(2/3)√(x-x2) = √x +√(1-x)
(DK: 0≤x≤1)
Đặt: √x = u
và √(1-x) = v (u;v≥0)
Khi đó ta được hệ hai phương trình:
{1+(2/3)uv=u+v (1)
và
{u^2+v^2=1 (2)
(1)<=>3(u+v)-2uv=3
(2)<=> (u+v)2-2uv=1
=> u+v=1 va uv=0 .hoac. u+v= 2va uv=3/2
Dùng định lí Vi-et bạn sẽ tìm được nghiệm (u;v), từ đó tim ra nghiệm x
*Nếu đề bai như thế này :
1+[2/(3*√(x-x^2) )] = √x +√(1-x)
chứng minh rằng
\(\frac{u+2}{u-2}\)=\(\frac{v+3}{v-3}\)
thì \(\frac{u}{2}\)=\(\frac{v}{3}\)
đề bài ko có mấy cái gạch thẳng đâu nhé
Giải:
Ta có: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u}{v}=\frac{2}{3}\)
\(\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u}{2}=\frac{v}{3}\)
Vậy \(\frac{u}{2}=\frac{v}{3}\)
thừa cái dòng chữ cuối cùng nhá