Những câu hỏi liên quan
TN
Xem chi tiết
SE
11 tháng 4 2016 lúc 18:40

d, từ C kẻ đường thẳng // với PM cắt AE,AB tại Q và K 

lấy H là trung điểm của BC

=>OH vuông góc với BC

H và E cùng nhìn OP dưới 1 góc 90 =>tứ giác OHEP nội tiếp =>góc MPH = góc OEH mà góc MPH = góc KCH (PM//CK) =>góc KCH= góc OEH =>tứ giác HQCE nội tiếp =>góc QHC = góc AEC mà góc AEC = góc ABC =>góc QHC=góc ABC =>QH//AB mà H là trung điểm BC

=>Q là trung điểm CK 

Áp dụng định lí TA-let ta được tam giác AMO đồng dạng tam giác AKQ =>MO/KQ=AO/AQ 

cmtt NO/CQ=AO/AQ mà CQ=KQ =>OM=ON

Bình luận (0)
NL
Xem chi tiết
TL
6 tháng 8 2021 lúc 15:02

undefined

Bình luận (0)
NN
Xem chi tiết
2N
Xem chi tiết
DT
24 tháng 3 2022 lúc 21:56

Giải thích các bước giải:

a) ΔABCΔABC có đường cao AN,BMAN,BM

⇒AN⊥BC;BM⊥AC⇒AN⊥BC;BM⊥AC

Xét tứ giác IMCNIMCN có:

ˆIMC=ˆINC=900(AN⊥BC;BM⊥AC;I∈AN;I∈BM)IMC^=INC^=900(AN⊥BC;BM⊥AC;I∈AN;I∈BM)

⇒ˆIMC+ˆINC=1800⇒IMC^+INC^=1800

⇒⇒ tứ giác IMCNIMCN nội tiếp

b) Xét ΔBINΔBIN và ΔAIMΔAIM có:

ˆBNI=ˆAMI=900(AN⊥BC;BM⊥AC;I∈AN;I∈BM)BNI^=AMI^=900(AN⊥BC;BM⊥AC;I∈AN;I∈BM)

ˆBIN=ˆAIMBIN^=AIM^ (đối đỉnh)

⇒⇒ ΔBIN∽ΔAIMΔBIN∽ΔAIM (g.g)

⇒IBIA=INIM⇒IA.IN=IM.IB⇒IBIA=INIM⇒IA.IN=IM.IB

c) Tứ giác IMCNIMCN nội tiếp

⇒ˆAIH=ˆNCM⇒AIH^=NCM^ hay ˆAIH=ˆACBAIH^=ACB^

Xét (O)(O) có: ˆACB=ˆAHBACB^=AHB^ (2 góc nội tiếp cùng chắn cung ABAB)

⇒ˆAIH=ˆAHB⇒AIH^=AHB^

⇒ˆAIH=ˆAHI⇒ΔAIH⇒AIH^=AHI^⇒ΔAIH cân tại A⇒AI=AHundefined

Bình luận (0)
VO
Xem chi tiết
LC
Xem chi tiết
LC
Xem chi tiết
NT
Xem chi tiết
NN
20 tháng 1 2018 lúc 17:20

Bạn giải chưa ạ??

Bình luận (0)
NV
28 tháng 4 2018 lúc 19:20

có ai kg giúp mình giải bài này đi

Bình luận (0)
TV
Xem chi tiết
ND
21 tháng 8 2019 lúc 17:40

A B C O H E D S F T I G

a) Gọi BH cắt (O) tại S khác B. Qua tính chất quen thuộc của trực tâm  ta thấy H,S đối xứng nhau qua AC.

Do đó ^ASE = ^AHE = 900 (Vì HE // BC, AH vuông góc BC) hay SE vuông góc với AS (1)

Ta có AD là đường kính của (O) => ^ASD chắn nửa (O) => SD vuông góc với AS (2)

Từ (1) và (2) suy ra SE trùng SD hay DE cắt (O) tại S. Như vậy BH,DE cắt nhau trên (O) (đpcm).

b) Tương tự câu a, CH,DF cũng cắt nhau tại 1 điểm trên (O), gọi nó là T

Dễ thấy AH = AS = AT (Tính chất đối xứng). Mà AH,AS,AT lần lượt là khoảng cách từ A đến EF,DE,DF

Nên A chính là tâm bàng tiếp góc D của \(\Delta\)DEF (A nằm ngoài \(\Delta\)DEF) (đpcm).

c) Gọi IH cắt CF tại G. Ta sẽ chỉ ra rằng B,G,E thẳng hàng. Thật vậy:

Ta có FA,FI là phân giác trong và ngoài của ^DFE => FI vuông góc AB => FI // CH

Từ đó \(\Delta\)IGF ~ \(\Delta\)HGC (g.g) => \(\frac{GI}{GH}=\frac{IF}{HC}\)(3)

Mặt khác ^IFE = ^FAH (Cùng phụ ^AFH) = ^HCB. Tương tự ^IEF = ^HBC

Suy ra \(\Delta\)EIF ~ \(\Delta\)BHC (g.g) => \(\frac{IF}{HC}=\frac{IE}{HB}\)(4)

Từ (3) và (4), kết hợp với ^GIE = ^GHB suy ra \(\Delta\)GEI ~ \(\Delta\)GBH (c.g.c)

=> ^IGE = ^HGB. Vì I,G,H thẳng hàng nên kéo theo B,G,E thẳng hàng

Vậy thì BE,CF,IH cắt nhau tại G (đpcm).

Bình luận (1)
NK
Xem chi tiết