A =1/2 + 3/2 + (3/2)2 + (3/2)3 +...+(3/2)2012
A=1+3^2+3^3+...+3^2012 va B=3^2012:2.Tính B-2
a)2^x+2^x+1+2^x+2+2^x+3=480
b)(1/2+1/3+...+1/2012+1/2013)*x=2012/1+2011/2+2010/3+..+2/2011+1/2012
so sánh giá trị của biểu thức sau A=1+(1+2)+(1+2+3)+.......+(1+2+3+...+2012) và B=1×2012+2×2011+3×2010+....+2012×1
Xét biểu thức A
A= 1+(1+2) +....... +(1+2+3+...+2012)
A = 1+1+2+1+2+3+...+1+2+3+...+2012
A có 2012 số 1
có 2011 số 2
...
có 1 số 2012
A = 1 x2012 +2x2011+...+2012x1
mà B = 1 x2012 +2x2011+...+2012x1
nên A=B
\(A=1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2012\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+...+2012\)
\(=1\times2012+2\times2011+...+2012\times1\)
\(=B\)
Cho A=1/2+3/2+(3/2)2+(3/2)4+........+(3/2)2012 và B=(3/2)2012:2
Tính B-A
Bạn kiểm tra lại đề nhé, hình như đề hơi có vấn đề
Cho A=1/2+3/2+(3/2)^2+(3/2)^3+...+(3/2)^2012 và B=(3/2)^2013 / 2
Cho A=1/2+3/2+3/2^2+(3/2)^2+(3/2)^3+...+(3/2)^2012 và B=(3/2)^2013:2
Tính B-A.
cho A=1/2+3/2+(3/2)^2+.....+(3/2)^2012, B=(3/2)^2013:2. tính B-A
\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)
\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right)\)
\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)
\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)
A= 1/3 +2/3^2 + 3/3^3 + 4/3^4 +...+ 2012/3^2012
Chứng minh rằng : A <3/4
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2012}{3^{2012}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{2012}{3^{2011}}\)
\(\Rightarrow3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{2012}{3^{2011}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2012}{3^{2012}}\right)\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2011}}-\frac{2012}{3^{2012}}\)
\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2010}}-\frac{2012}{3^{2011}}\)
\(\Rightarrow6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2010}}-\frac{2012}{3^{2011}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2011}}-\frac{2012}{3^{2012}}\right)\)
\(\Rightarrow4A=3-\frac{2012}{3^{2011}}\)
\(\Rightarrow A=\frac{3-\frac{2012}{3^{2011}}}{4}=\frac{3}{4}-\frac{\frac{2012}{3^{2011}}}{4}=\frac{3}{4}-\frac{2012}{3^{2011}.4}\)
\(\Rightarrow A< \frac{3}{4}\)
cho a 1+ 3+3^2+3^3+3^4+..........3^2012
b = 3^2012:2
tinh a-b