\(2A=2\left(\frac{1}{2}+\frac{3}{2}+...+\frac{3}{2^{2012}}\right)\)
\(2A=1+3+...+\frac{3}{2^{2011}}\)
\(2A-A=\left(1+3+...+\frac{3}{2^{2011}}\right)-\left(\frac{1}{2}+\frac{3}{2}+...+\frac{3}{2^{2012}}\right)\)
\(A=4-\frac{3}{2^{2012}}\)
\(2A=2\left(\frac{1}{2}+\frac{3}{2}+...+\frac{3}{2^{2012}}\right)\)
\(2A=1+3+...+\frac{3}{2^{2011}}\)
\(2A-A=\left(1+3+...+\frac{3}{2^{2011}}\right)-\left(\frac{1}{2}+\frac{3}{2}+...+\frac{3}{2^{2012}}\right)\)
\(A=4-\frac{3}{2^{2012}}\)
A=1+3^2+3^3+...+3^2012 va B=3^2012:2.Tính B-2
Cho A=1/2+3/2+(3/2)2+(3/2)4+........+(3/2)2012 và B=(3/2)2012:2
Tính B-A
Cho A=1/2+3/2+(3/2)^2+(3/2)^3+...+(3/2)^2012 và B=(3/2)^2013 / 2
Cho A=1/2+3/2+3/2^2+(3/2)^2+(3/2)^3+...+(3/2)^2012 và B=(3/2)^2013:2
Tính B-A.
cho A=1/2+3/2+(3/2)^2+.....+(3/2)^2012, B=(3/2)^2013:2. tính B-A
A= 1/3 +2/3^2 + 3/3^3 + 4/3^4 +...+ 2012/3^2012
Chứng minh rằng : A <3/4
cho a 1+ 3+3^2+3^3+3^4+..........3^2012
b = 3^2012:2
tinh a-b
Cho A = 1/2+3/2+(3/2)^2+................+(3/2)^2012; B=(3/2)^2013:2
Tính A - B
Tính A= 1+3/2+3/22+3/23+...............+3/22012