Những câu hỏi liên quan
KT
Xem chi tiết
SM
Xem chi tiết
SM
29 tháng 4 2018 lúc 16:55

x>o nhá

Bình luận (0)
TA
Xem chi tiết
PT
14 tháng 8 2017 lúc 20:47

\(M=4x^2-3x+\dfrac{1}{4x}+2011\)

\(M=4x^2-4x+1+x+\dfrac{1}{4x}+2011\)

\(M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)

\(\left(2x-1\right)^2\ge0\)\(x>0\)

\(\Rightarrow\dfrac{1}{4x}>0\)

Lợi dụng BĐT Cauchy cho 2 số nguyên dương ta có:

\(x+\dfrac{1}{4x}\ge2\sqrt{x\dfrac{1}{4x}}=2.\dfrac{1}{2}=1\)

\(\Rightarrow M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\ge0+1+2010=2011\)

\(\Rightarrow M\ge2011\)

Dấu " = " xảy ra khi:

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\x=\dfrac{1}{4x}\\x>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x^2=\dfrac{1}{4}\\x>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\\x>0\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(M_{min}=2011\) đạt được khi \(x=\dfrac{1}{2}\)

Bình luận (1)
VV
Xem chi tiết
AH
12 tháng 8 2023 lúc 23:52

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

Bình luận (0)
AH
12 tháng 8 2023 lúc 23:54

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

Bình luận (0)
AH
12 tháng 8 2023 lúc 23:55

Tìm min

$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$

$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$

$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$

$\Leftrightarrow x=\frac{1}{10}$

Bình luận (0)
MH
Xem chi tiết
MH
Xem chi tiết
AH
13 tháng 8 2021 lúc 22:48

Bài đã đăng rồi bạn lưu ý không đăng lại làm loãng box toán.

Bình luận (0)
JK
Xem chi tiết
MT
7 tháng 1 2017 lúc 21:31

a) x= - 15

b) x= - 2

c) x= -12 

d) x= -2 

Bình luận (0)
LA
Xem chi tiết
NA
Xem chi tiết
TA
21 tháng 7 2017 lúc 9:00

\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2016}{2017}\)

\(=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot2016}{2\cdot3\cdot4\cdot....\cdot2017}\)

\(=\frac{1}{2017}\)

Bình luận (0)
TP
21 tháng 7 2017 lúc 8:57

Ta có:

\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{2016}{2017}\)

\(=\frac{1.2.3......2016}{2.3.4......2017}\)

\(=\frac{1}{2017}\)

Vậy: \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{2016}{2017}\)\(=\frac{1}{2017}\)

Bình luận (0)
EC
21 tháng 7 2017 lúc 8:59

Ta có:

\(\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times.....\times\frac{2016}{2017}\)

\(\Rightarrow\frac{1\times2\times3\times.....\times2016}{2\times3\times4\times....\times2017}=\frac{1}{2017}\)

Vậy giá trị biểu thức là \(\frac{1}{2017}\)

Bình luận (0)