Nếu \(x<0\) thì khi \(x=-0,0000000000......1\), biểu thức có giá trị gần âm vô cùng (không tồn tại GTNN)
Giải bài toàn với x > 0:
\(A=\left(x^2+\frac{1}{8x}+\frac{1}{8x}\right)+3\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)
\(=x^2+\frac{1}{8x}+\frac{1}{8x}+3\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)
\(\ge3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}+0-\frac{3}{4}=0\)
Dấu bằng xảy ra khi \(\left(x^2=\$\frac{1}{8x}\text{ và }x-\frac{1}{2}=0\right)\Leftrightarrow x=\frac{1}{2}.\)
+Cách 2: ta có: \(4x^2-3x+\frac{1}{4x}=\frac{16x^3-12x^2+1}{4x}=\frac{\left(2x-1\right)^2\left(4x+1\right)}{4x}\ge0\forall x>0\)