Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
LH
23 tháng 6 2016 lúc 8:07
cho A= 2/3+8/9+26/17+...+3^n-1/3^n n-A= 1/3+1/3^2+1/3^3+...+1/3^n 3(n-A)= 3+1/3+1/3^2+..+1/3^n-1 3(n-A)-(n-A)=1-1/3^n 2(n-A)=1-1/3^n n-A=1/2-2/3^n<1/2 =>n-A<1/2 => A
Bình luận (0)
OP
25 tháng 6 2016 lúc 16:02

cho A=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)

=> n-A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)

=>\(3\left(n-A\right)\)=\(1\)\(+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{3n-1}}\)

=> \(3\left(n-A\right)-\left(n-A\right)=2\left(n-A\right)=1-\frac{1}{3^n}\)

=>\(2\left(n-A\right)< 1\)

=>\(n-A< \frac{1}{2}\)

=> \(A< n-\frac{1}{2}\)

Deu la tui het do

Bình luận (0)
NC
1 tháng 1 2018 lúc 21:30

Sao lại là n-A thế bạn? n đã tìm đc đâu

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
ND
8 tháng 12 2021 lúc 11:27

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

Bình luận (0)
P6
Xem chi tiết
LH
Xem chi tiết
NL
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
NL
31 tháng 7 2020 lúc 20:54

\(C=\frac{3-1}{3}+\frac{3^2-1}{3^2}+...+\frac{3^n-1}{3^n}\)

\(=1-\frac{1}{3}+1-\frac{1}{3^2}+...+1-\frac{1}{3^n}\)

\(=1+1+...+1-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)\)

\(=n-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)=n-D\)

\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\)

\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)

\(\Rightarrow2D=1-\frac{1}{3^n}\Rightarrow D=\frac{1}{2}-\frac{1}{2.3^n}\)

\(\Rightarrow C=n-\left(\frac{1}{2}-\frac{1}{2.3^n}\right)=n-\frac{1}{2}+\frac{1}{2.3^n}>n-\frac{1}{2}\)

Bình luận (0)