Những câu hỏi liên quan
TC
Xem chi tiết
NC
Xem chi tiết
PN
Xem chi tiết
NT
23 tháng 1 2024 lúc 19:07

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

Bình luận (1)
NC
Xem chi tiết
QL
Xem chi tiết
PG
12 tháng 2 2023 lúc 19:34

Theo đề, ta có:   \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}\) \(=\dfrac{x+y+z+t}{y+z+t+x}=1\) .

\(\Rightarrow x=y;y=z;z=t;t=x\)

\(\Rightarrow x=y=z=t\)

\(M=\dfrac{2x-y}{z+t}+\dfrac{2y-z}{t+x}+\dfrac{2z-t}{x+y}+\dfrac{2t-x}{y-z}\)

\(M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}\)

\(M=\dfrac{1}{2}.4\)

\(M=2\)

 

Bình luận (0)
MN
Xem chi tiết
TA
Xem chi tiết
AH
27 tháng 4 2019 lúc 23:13

Lời giải:

Áp dụng BĐT Cauchy cho các số không âm ta có:

\(\frac{2}{3}x^2+\frac{2}{3}y^2\geq 2.\sqrt{\frac{2}{3}x^2.\frac{2}{3}y^2}=2|\frac{2}{3}xy|\geq \frac{4}{3}xy\)

\(\frac{1}{3}x^2+\frac{4}{3}t^2\geq 2|\frac{2}{3}xt|\geq \frac{4}{3}xt\)

\(\frac{1}{3}y^2+\frac{4}{3}z^2\geq 2|\frac{2}{3}yz|\geq \frac{4}{3}yz\)

\(\frac{2}{3}z^2+\frac{2}{3}t^2\geq 2|\frac{2}{3}zt|\geq \frac{4}{3}zt\)

Cộng theo vế và rút gọn:

\(\Rightarrow x^2+y^2+2z^2+2t^2\geq \frac{4}{3}(xy+xt+yz+zt)\)

\(\Leftrightarrow 1\geq \frac{4}{3}(x+z)(y+t)\)

\(\Leftrightarrow A=(x+z)(y+t)\leq \frac{3}{4}\)

Vậy \(A_{\max}=\frac{3}{4}\)

Bình luận (0)
Lu
Xem chi tiết
H24
17 tháng 7 2017 lúc 19:22

Áp dụng BĐT bunyakovsky:

\(\left(x^2+y^2+2z^2+2t^2\right)\left(1+1+\dfrac{1}{2}+\dfrac{1}{2}\right)\ge\left(x+y+z+t\right)^2\)

Lại có: theo AM-GM:\(\left(x+y+z+t\right)^2\ge4\left(x+z\right)\left(y+t\right)\)

\(\Rightarrow4VT\le3\Leftrightarrow VT\le\dfrac{3}{4}\)

Dấu = xảy ra khi \(x=y=2z=2t=\dfrac{1}{\sqrt{3}}\)

P/s : Nếu đề mà cho là (x+y)(z+t) thì die :v

Bình luận (0)
TN
Xem chi tiết