Những câu hỏi liên quan
BM
Xem chi tiết
NA
Xem chi tiết
H24
11 tháng 5 2017 lúc 13:16

1 - 1/2 + 1/3 - 1/4 +...+ 1/99 - 1/100

= (1 + 1/3 +...+ 1/99) - (1/2 + 1/4 +...+ 1/100)

= (1+1/2+1/3+...+1/100) - 2(1/2+1/4+...+1/100)

= (1+1/2+1/3+...+1/100) - (1+1/2+...+1/50)

= 1/51+1/52+...+1/100 (đpcm)

Bình luận (1)
H24
14 tháng 10 2023 lúc 14:49

Bạn đã được chuyển khoản số tiền 1.000.000.000 VND 

Bình luận (0)
DH
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
KF
2 tháng 5 2015 lúc 19:29

Đề là gì z????????????                                                                                        

Bình luận (0)
MU
2 tháng 5 2015 lúc 19:29

đây là j`? đầu đề hổng có, làm sao mà giải đc?????

Bình luận (0)
NT
28 tháng 12 2017 lúc 6:25

đề thiếu

Bình luận (0)
FS
Xem chi tiết
ST
10 tháng 5 2017 lúc 11:39

Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)(đpcm)

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 4 2023 lúc 13:18

Sửa đề: \(\dfrac{\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

\(=\dfrac{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

=1

Bình luận (0)
NA
Xem chi tiết
NH
Xem chi tiết