tính
1/1.2 + 1/2.3 + ... + 1/ 49.50
làm phép tính
1/1.2+1/2.3+1/3.4+ ... +1/98.99+1/99.100
`1/( 1.2 ) + 1/( 2.3 ) + .......+1/(99.100)`
`= 1-1/2+1/2-1/3+.....+1/99-1/100`
`=1-1/100`
`=99/100`
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100=99/100
\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
cho A = 1/1.2+1/2.3+1/3.4+...+1/49.50 ; cho B = 1.2+1.3+3.4+....+49.50
tính 50mủ 2A - B/17
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(B=1.2+2.3+3.4+...+49.50\)
\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)
\(=49.50.51\)
\(B=\frac{49.50.51}{3}=49.50.17\)
\(50^2.A-\frac{B}{17}=49.50-49.50=0\)
M=1/1.2+1/2.3+...+1/49.50 với 1
A = 1/1.2 + 1/2.3 + ..... + 1/49.50
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}=A\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{49}{50}\)
M=1/1.2+1/2.3+...+1/49.50
M=1/1.2+1/2.3+...+1/49.50
M=1-1/2+1/2-1/3+...+1/49-1/50
M=1-1/50
M=49/50
m=1-1/2+1/2-1/3+....+1/40-1/50
= 1/-1/50
= 49/50
Đặt A=1/1.2+ 1/2.3+1/3.4+1/4.5+...+1/49.50
=2-1/1.2 + 3-2/2.3+4-3/3.4+5-4/4.5+.......+50-49/49...
=2/1.2 - 1/1.2+ 3/2.3 - 2/2.3+4/3.4 - 3/3.4 + ................+50/49.50 - 49/49.50
=1- 1/50
=49/50
Vậy giá trị của biểu thức A là 49/50
M=1/1.2+2/2.3+...+1/49.50 với 1
Sửa đề: 2/2.3 ➜ 1/2.3
Giải:
M=1/1.2+1/2.3+...+1/49.50
M=1/1-1/2+1/2-1/3+...+1/49-1/50
M=1/1-1/50
M=49/50
Vì 49/50<1 nên M<1
Chúc bạn học tốt!
1/1.2+1/2.3+1/3.4+.....+1/49.50
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=1-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)
A=1/1.2+1/2.3+1/3.4+...+1/49.50
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =1-\dfrac{1}{50}\\ =\dfrac{49}{50}\)
A= 1/1.2 + 1/2.3+1/3.4+...+ 1/49.50
A = 1- 1/2 + 1/2-1/3 +1/3-1/4+...........+ 1/49-1/50
A= 1- 1/50= 49/50
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.........+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+......+\left(-\frac{1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)
\(A=\frac{1}{1}-0+0+0+0+......+0+0-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)