dấu":"là chia hết nha
chứng minh 222555+555222:7
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng : 555222 + 222555 chia hết cho 7
THAM KHẢO! 555222 + 222555 =222555 + 555555 - (555555 - 555222)
= 222555 + 555555 - 555222(555333 - 1)
Ta có :
222555 + 555555 chia hết cho 222 + 555 = 777 chia hết cho 7 (1)
555333 - 1 = (5553)111 - 1 ⋮⋮ 5553 - 1
Ta có 555 = 7 . 79 + 2 = 7k + 2 (với k = 79)
5553 - 1 = (7k+2)³ - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 8 - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 7 ⋮⋮ 7
=> 555333 - 1 chia hết cho 7 (2)
Từ (1) và (2) => 555222 + 222555 chia hết cho 7 (đpcm)
Chứng minh rằng dấu hiệu chia hết cho 7 của số abcdeg là g + 3e + 2d - c -3b -2a chia hết cho 7
Chứng minh 2^1 + 2^2 +2^3 + 2^4 +.....+2^2010. chia hết cho 3 và 7 ( ^ là dấu mũ nhé).
Chứng minh 3^1 + 3^2 + 3^3 +.......+ 3^2010 chia hết cho 4 và 13
Chứng minh 5^1 + 5^2 + 5^3 + ........ + 5^2010 chia hết cho 6 và 31
Chứng minh 7^1 + 7^2 + 7^3 + .....+ 7^2010 chia hết cho 8 và 57
Mọi người chỉ trả lời một phần cũng ok thank mn nhiều
1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10
A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)
A= 3.( 2^1+2^3+2^5+...+2^1005)
Do 3 \(⋮\)3 => A\(⋮\)3
Ta có: A =.....
A= Ghép 3 số lại
A= 7. (2^1+ 2^4+...+2^670)
Do 7 \(⋮\)7 => A \(⋮\)7
2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi
Duyệt nhanh....
LẦN NÀY HỎI NHA
chứng minh tlt :
CHO TLT a/b=c/d ko = 1
với a,b, c,d ko = 0
a-b/a=c-d/c
Một số chia hết cho 3, chỉ khi tổng của tất cả các chữ số của nó chia hết cho 3. Ta không cần biết nó có bao nhiêu chữ số, là số lẻ hay số chẵn, chỉ cần cộng tất cả các chữ số tạo thành số đó nếu chia hết cho 3 thì số đó chắn chắn chia hết cho 3.
Ví dụ: Ví dụ: số 345 chia hết cho 3 vì tổng các chữ số của nó (3 + 4 + 5 = 12) chia hết cho 3.
Số 123455 không chia hết cho 3 vì tổng 1 + 2 + 3 + 4 + 5 + 5 = 20 không chia hết cho 3.
Dấu hiệu chia hết cho 4Với trường hợp phép chia hết cho 4 ta phải xét 2 trường hợp gồm:
Nếu số lớn hơn 99:
Một số chia hết cho 4 khi 2 chữ số cuối của số đó là số 0 hoặc tổng 2 số cuối cùng chia hết cho 4.Ví dụ: 14676 chia hết cho 4 vì 2 chữ số cuối cùng 76 tạo thành một số chia hết cho 4 (76/4 = 19). Số 345200 cũng chia hết cho 4 vì 2 chữ số cuối là số không.Nếu số nhỏ hơn 99:
Số chỉ chia hết cho 4 khi ta nhân đôi chữ số hàng chục và cộng thêm chữ số hàng đơn vị, nếu kết quả này chia hết cho 4 thì số ban đầu sẽ chia hết cho 4. Ví dụ: số 64, số hàng chục ở đây là 6, chúng ta cần nhân đôi số này và cộng thêm chữ số cuối: 2 * 6 + 4 = 16, 16 chia hết cho 4 do đó 64 chia hết cho 4.Hoặc số 96 = 9.2 + 6 = 24 /4 = 6 nên 96 chia hết cho 4. Số 47 = 4.2 + 7 = 15 không chia hết cho 4 nên 47 không chia hết cho 4.Dấu hiệu chia hết cho 5Trường hợp chia hết cho 5 đơn giản hơn nhiều, điều kiện cần là chữ số cuối có giá trị bằng 0 hoặc 5 thì nó chia hết cho 5.
Ví dụ: Số 2015 chia hết cho 5 vì chữ số cuối cùng bằng 5, hoặc số 2020 có số 0 cuối cùng nên thỏa điều kiện sẽ chia hết cho 5.
Dấu hiệu chia hết cho 6Có các quy tắc nhận biết một số có chia hết cho 6 gồm:
Một số chia hết cho 6 khi nó chia hết cho 2 và chia hết cho 3. Ví dụ số 12 /2 = 6 và 12/3 = 4 nên 12 chia hết cho 6.Nếu kết quả chữ số hàng chục nhân với 4 rồi cộng thêm chữ số hàng đơn vị của một số bất kỳ chia hết cho 6 thì số đó chia hết cho 6. Ví dụ: Số 72 = 7.4 + 2 = 28 + 2 = 30 / 6 = 5. Nên 72 chia hết cho 6. Nếu tổng các chữ số là một số chẵn và tổng này chia hết cho 3 thì số đó đó chắc chắn sẽ chia hết cho 6. Ví dụ: Số 132 có tổng các chữ số = 1 + 3 + 2 = 6 /3 = 2. Nên 132 chia hết cho 6.Dấu hiệu chia hết cho 7Có các dấu hiệu nhận biết một số bất kỳ có chia hết cho 7 không gồm:
Nhân đôi chữ số cuối cùng rồi lấy các chữ số còn lại trừ cho phép nhân đó nếu kết quả chia hết cho 7 thì số đã cho sẽ chia hết cho 7. Ví dụ 784 ta thực hiện như sau: lấy số cuối cùng là 4.2 = 8, lấy 2 chữ số còn lại là 78 – 8 = 70 /7 = 10, suy ra được 784 sẽ chia hết cho 7. Nếu một số có 2 chữ số và ta lấy chữ số hàng chục nhân với 3 rồi cộng với chữ số hàng đơn vị. Nếu kết quả này chia hết cho 7 thì số đó chia hết cho 7. Lưu ý rằng cách này chỉ áp dụng với số có 2 chữ số. Ví dụ số 98 ta lấy 9.3 + 8 = 27 + 8 = 35 /7 = 5. Nên 98 sẽ chia hết cho 7.Dấu hiệu chia hết cho 8Nếu ba chữ số cuối của một số chia hết cho 8, thì số đó chia hết cho 8. Ví dụ số 109816 có 816 /8 = 102 nên 109816 chia hết cho 8.
Mẹo gợi ý làm nhanh: Ta lấy 3 số cuối cùng chia liên tiếp 3 lần cho 2, nếu kết quả là số nguyên thì số đó chia hết cho 8. Ví dụ số 109816 có 816/2 = 408, 408/2 = 204, 204/2 = 102.
Dấu hiệu chia hết cho 9Một số chỉ chia hết cho 9 khi tổng của tất cả các chữ số của nó chia hết cho 9, ví dụ số 12345678 chia hết cho 9 vì 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 chia hết cho 9.
Dấu hiệu chia hết cho 10Một số chỉ chia hết cho 10 khi chữ số cuối của số này là 0 (không).
Ví dụ: Các số 100, 500, 2020, 5050 đều chia hết cho 10.
1> Dấu hiệu chia hết cho 2 ( ⋮ 2)
Các số chẵn tận cùng là 0,2,4,6,8 thì chia hết cho 2 è các số lẻ chia cho hai thì luôn dư 1
VD : 82⋮2 ; 26474⋮2 ; 3457938⋮2 ; 3486⋮2 ( vì có tận cùng là 2;4;8;6)
57 chia cho hai thì dư 1 ( số lẻ )
2> Dấu hiệu chia hết cho 3 ( ⋮3)
Tổng các số tạo thành số đó chia hết cho 3 thì số đó chia hết cho 3
VD : 2349 có tổng = 2+3+4+9=18 vậy số 2349 ⋮3
3287 có tổng = 3+2+8+7 = 20 vậy số 3287 không ⋮3
3> Dấu hiệu chia hết cho 4 ( ⋮4)
Hai số cuối của số đó tạo thanh một số có hai chữa số mà chia hết cho 4 thì số đó chia hết cho 4
VD : 8 ⋮4 ( vì 08 ⋮4) ; 5460 ⋮4 ( vì 60⋮4) ; 8724⋮4 ( vì 24⋮4)
56731 không chia hết cho 4 vì ( 31 không chia hết cho 4)
4> Dấu hiệu chia hết cho 5 (⋮5)
Tận cùng của số đó là 0;5 thì chia hết cho 5
VD : 345⋮5 ; 7650⋮5 ; 45654 không chia hết cho 5
5> Dấu hiệu chia hết cho 6 ( ⋮6)
Một số đồng thời chia hết cho 3 và cho 2 thì chia hết cho 6
VD : 306 ⋮6 ( vì 306⋮2 và đồng thời 306⋮3)
2356 không ⋮6 ( vì 2356⋮2 nhưng 2356 không ⋮3)
6> Dấu hiệu chia hết cho 7
Lấy chữ số đầu tiên bên trái , nhân với 3 , được bao nhiêu cộng thêm với số thứ 2 , rồi được bao nhiêu lại nhân với số thứ 3 rồi lại cộng với số thứ tư . Làm như thế cho đến số cuối cùng bên phải . Nếu kết quả là một số chia hết cho 7 thì số đó chia hết cho 7 .
VD : 798⋮7 Vì 7×3=21+9=30×3=90+8=98 Nhận thấy 98:7=14 nên 798 chia hết cho 7
Một cách tối giản khác như sau : Để thuận tiện thì sau khi cộng với số tiếp theo có thể trừ đi một bội của 7 để dễ tính .
( vì cố đầu tiên bên trái là 7 vậy nên ta có 7 x3 =21 +9=30 ( giảm đi bội của 7 30 – 28 (28=4×7)=2 ) nhân tiếp với 3 ta có : 2 x3=6 rồi cộng với số tiếp theo : ta có 6+8 =14 ⋮7 )
nghe có vẻ lằng nhằng
Kết quả phép tính : 798:7= 114
247 không ⋮7 ( vì 2×3=6+4=10×3=30+ 7=37 không chia hết cho 7 )
7> Dấu hiệu chia hết cho 8 ( ⋮8)
3 chữ số cuối cùng bên phải tạo thanh một số chia hết cho 8 thì số đó chia hết cho 8 è số ⋮8 thì sẽ ⋮4 và ⋮2
VD 9192⋮8 ( vì 192⋮8 =24) ; số 8297 không chia hết cho 8 vì 297 không ⋮8
8> Dấu hiệu chia hết cho 9
Tổng các số tạo thanh số đó mà chia hết cho 9 thì số đó chia hết cho 9
VD 23787 ⋮9 = 2643 ( vì 2+3+7+8+7=27⋮9)
1278 không ⋮7 vì ( 1+2+7+8=18 không ⋮9)
Cho P=1+2+2*2+2*3+2*4+2*5+2*6+2*7[dấu * là mũ].
Chứng minh P chia hết cho 3
P = 1 + 2 + 22 + ...... + 27
=> P = (1 + 2) + (22 + 23) + (24 + 25) + (26 + 27)
=> P = 1.3 + 22.(1 + 2) + 24.(1 + 2) + 26(1 + 2)
=> P = 1.3 + 22.3 + 24.3 + 26.3
=> P = 3.(1 + 22 + 24 + 26)
Mà 1 + 22 + 24 + 26 là số tự nhiên
Nên P chia hết cho 3 (đpcm)
X:25 và 25:x (dấu chia là dấu chia hết) X là ước của 21 và x thuộc B(7) X:6 và 12
a: \(x⋮25;25⋮x\)
=>\(\left\{{}\begin{matrix}x\inƯ\left(25\right)\\x\in B\left(25\right)\end{matrix}\right.\)
=>\(x\in\left\{25;-25\right\}\)
b: \(x\inƯ\left(21\right)\)
=>\(x\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
mà \(x\in B\left(7\right)\)
nên \(x\in\left\{7;-7;21;-21\right\}\)
x2 + 2x - 1 chia hết 7
lưu ý chữ chia hết là dấu chia hết nha ahihi
=x.x+2x-1
=2x+2x-1
=x.(2+2)-1
=x.4-1
=>x=7.4-1 chia hết cho 7
2.n + 7 : n-2
dấu : là dấu hiệu chia hết
Có \(2n+7⋮n-2\)
\(\Rightarrow\left(2n-4\right)+11⋮n-2\)
Do \(2n-4⋮n-2\)
\(\Leftrightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{1;-1;11;-11\right\}\)
Ta có bảng sau:
n - 2 | 1 | -1 | 11 | -11 |
n | 3 | 1 | 13 | -9 |
Đề bài yêu cầu j vậy bn! cho đề phải cho hẳn hỏi chứ! nhưn này ai biết đường nào mà lần!
Ta có :
\(2n+7⋮n-2\)
Mà \(n-2⋮n-2\)
\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n-2\\2n-4⋮n-2\end{cases}}\)
\(\Leftrightarrow3⋮n-2\)
Vì \(n\in N\Leftrightarrow n-2\in N;n-2\inƯ\left(3\right)\)
Ta có bảng :
\(n-2\) | \(1\) | \(3\) |
\(n\) | \(3\) | \(5\) |
\(Đk\) \(n\in N\) | TM | TM |
Vậy \(n\in\left\{3;5\right\}\) là giá trị cần tìm