cho đa thức: f(x)=ax^2+bx+c chia hết cho 2016. CMR: a, b, c chia hết cho 2016
Cho đa thức f(x)=ax^2+bx+c chia hết cho 2015 với mọi x. CMR: a, b, c chia hết cho 2015
Cho đa thức f|(x)=ax2-bx+c với a,b,c là các số nguyên và a khac 0 sao cho f(9) chia hết cho 5 và f(5) chia hết cho 9. CMR: f(104) chia hết cho 45
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
Cho đa thức f(x)=ax2-bx+c với a,b,c là các số nguyên dương và a khác 0 sao cho f(9) chia hết cho 5 và f(5) chia hết cho 9.CMR f(104) chia hết cho 45
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
Cho đa thức f(x)=ax2+ bx+ c
a) CMR: nếu a-b+c =0 thì đa thức có 1 nghiệm = -1
b) Với a,b,c thuộc Z và f(1), f(0), f(-1) đều chia hết cho 3
CMR: a,b,c đều chia hết cho 3
cho đa thức : f(x)= ax^2+bx+c trong đó a;b;c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho 3 với mọi số nguyên của x . CMR : a,b,c chia hết cho 3
Cho đa thức f(x)=ax^2+bx+c (a,b,c nguyên ) .
CMR nếu f(x) chia hết cho 3 với mọi giá trị của x thì a,b,c đều chia hết cho 3 .
cho đa thức f(x)=ax^2+bx+c,trong đó a,b,c là các số nguyên . Biết rằng giá trị của đa thức chia hết cho số nguyên tố p(p>2) với mọi giá trị nguyên của x . CMR : a,b,c đều chia hết cho p
a) Cho đa thức f(x) thỏa mã đkiện
x.f.(x+1)=(x+2).f(x)
CMR : Đa thức f(x) có ít nhất 2 nghiệm
b) CMR : Nếu gtrị của bthức f(x)=ax^2+ bx +c chia hết cho 2007 với mọi x nguyên ( a,b là các số nguyên ) thì các hệ số a,b,c đều chia hết cho 2007
a) Ta có:\(x.f\left(x+1\right)=\left(x+2\right).f\left(x\right)\)
+)Thay \(x=0\) ta có:\(2.f\left(0\right)=0\)\(\implies\) \(f\left(0\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=0 (1)
+)Thay \(x=-2\) ta có:\(-2.f\left(-1\right)=0\)\(\implies\) \(f\left(-1\right)=0\)
Vậy đa thức \(f\left(x\right)\) có nghiệm là x=-1 (2)
Từ (1),(2)
\(\implies\) đa thức \(f\left(x\right)\) có ít nhất hai nghiệm
b)Ta có:\(f\left(x\right)=ax^2+bx+c\)
+)Với x=0 \(\implies\) \(f\left(0\right)=a.0^2+b.0+c=c:2007\left(1\right)\)
+)Với x=1 \(\implies\) \(f\left(1\right)=a.1^2+b.1+c=a+b+c:2007\left(2\right)\)
+)Với x=-1 \(\implies\) \(f\left(-1\right)=a.\left(-1\right)^2-b.1+c=a-b+c:2007\left(3\right)\)
Từ (2);(3) cộng vế với vế ta được:
\(\implies\) \(f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c\)
\(=2a+2c\)
\(=2.\left(a+c\right):2007\)
mà \(\left(2,2007\right)=1\)\(\implies\) \(a+c:2007\) \(\left(4\right)\)
Từ \(\left(1\right),\left(4\right)\) \(\implies\) \(a:2007\) \(\left(5\right)\)
Từ \(\left(4\right),\left(2\right)\) \(\implies\) \(b:2007\) \(\left(6\right)\)
Từ \(\left(1\right),\left(5\right),\left(6\right)\) \(\implies\) các hệ số a,b,c đều chia hết cho 2007\(\left(đpcm\right)\)
Cho đa thức f(X)=ax^2-bx+c.Vớ a,b,c là các số nguyên và a khác o sao cho f(9) chia hết cho5 và f(9) chia hết cho 9 CMR f(104) chia hết cho 45. Giúp mk vs mk đang cần gấp