Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DH
Xem chi tiết
NL
26 tháng 3 2019 lúc 12:41

a/ Với \(x=2016\Rightarrow2017=x+1\)

\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2025\)

\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2025\)

\(A=2025-x=9\)

b/ Với \(x=-1\Rightarrow\left\{{}\begin{matrix}x^{2k}=1\\x^{2k+1}=-1\end{matrix}\right.\) ta có:

\(Q=2017-2016+2015-2014+...+3-2+1\)

\(Q=1+1+1+...+1+1\) (có \(\frac{2016}{2}+1=1009\) số 1)

\(Q=1009\)

Bình luận (0)
MD
Xem chi tiết
NV
Xem chi tiết
NH
Xem chi tiết
TA
Xem chi tiết
LT
Xem chi tiết
TK
Xem chi tiết
KN
20 tháng 10 2019 lúc 15:33

\(x^4+2016x^2+2017x+2016\)

\(=x^4+2016x^2+2016x+x+2016\)

\(=\left(x^4+x\right)+\left(2016x^2+2016x+2016\right)\)

\(=x\left(x^3+1\right)+2016\left(x^2+x+1\right)\)

\(=x\left(x+1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2+x+2016\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NT
Xem chi tiết
AH
31 tháng 5 2023 lúc 14:03

Lời giải:

Tại $x=2016$ thì $x-2016=0$

Khi đó:
$A=x^{2016}(x-2016)-x^{2015}(x-2016)+x^{2014}(x-2016)-x^{2013}(x-2016)+.....-x(x-2016)+x-2017$

$=x^{2016}.0-x^{2015}.0+......-x.0+2016-2017=2016-2017=-1$

Bình luận (0)