Những câu hỏi liên quan
NL
Xem chi tiết
LD
21 tháng 1 2017 lúc 21:28
Câu a làm sao vậy banđ
Bình luận (0)
NL
23 tháng 1 2017 lúc 21:13

giải câu a ra đi cậu 

Bình luận (0)
NC
Xem chi tiết
ND
19 tháng 11 2019 lúc 20:03

hình chương mấy đấy

Bình luận (0)
 Khách vãng lai đã xóa
NC
19 tháng 11 2019 lúc 20:06

trong đề cương ôn thì học kì

Bình luận (0)
 Khách vãng lai đã xóa
H24
20 tháng 11 2019 lúc 10:55

a)Xét \(\Delta ABH\)và \(\Delta ACH\)có:

\(AB=AC\left(gt\right)\)

\(AH:\)cạnh chung

\(HB=HC\)(H: trung điểm BC)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\) 

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)(hai cạnh tương ứng)

\(\Rightarrow AH\)là pg\(\widehat{BAC}\)

b)Xét \(\Delta AEH\)và \(\Delta ADH\)có:

\(AE=AD\left(gt\right)\)

\(\widehat{EAH}=\widehat{DAH}\left(cmt\right)\)

\(AH:\)cạnh chung

\(\Rightarrow\Delta AEH=\Delta ADH\left(c.g.c\right)\)

\(\Rightarrow\widehat{AEH}=\widehat{ADH}\)(hai cạnh tương ứng)

\(\Rightarrow\widehat{AEH}=90^o\)

c) Câu này mình thấy sao ấy, nếu M là gđ của AB và DH thì sao được.

Ta có:

\(AE\perp EH\)

\(DH\perp EH\)

\(\Rightarrow AE//DH\)

\(\Rightarrow AB//DH\)

\(\Rightarrow AB;DH\)không có điểm chung

Bình luận (0)
 Khách vãng lai đã xóa
2P
Xem chi tiết
NT
16 tháng 12 2021 lúc 19:14

Bài 2: 

d: \(\Leftrightarrow\left[{}\begin{matrix}2x-1=9\\2x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-4\end{matrix}\right.\)

Bình luận (0)
H24
16 tháng 12 2021 lúc 19:17

\(f.24-2\left(x+1\right)=3^5:3^2-5.\left(9-3\right)^0\\24-2\left(x+1\right)=3^3-5.6^0\\ 24-2\left(x+1\right)=27-5.1\\ 24-2\left(x+1\right)=27-5\\ 24-2\left(x+1\right)=22\\ 2\left(x+1\right)=24-22\\ 2\left(x+1\right)=2\\ x+1=2:2\\ x+1=1\\ x=1-1\\ x=0\)

Bình luận (0)
HT
16 tháng 12 2021 lúc 19:20

d,     (2x-1)2= 81                 e, (x-3.4^2)3= 64

=> (2x-1)2= 92                        (x-3.16)3= 4^3

=> 2x-1=9                                x-48      =  4

=> 2x=10                                 x           = 4+48= 52

=> x= 10:2                               Vậy...

=> x=5

Vậy ...

Bình luận (2)
NQ
Xem chi tiết
NL
5 tháng 10 2017 lúc 14:36

                                 Giải : 

Ta có hình vẽ :

A B C H D E

a ) Ta có :

+ ) \(AH^2=BH.CH=9.16=144cm^2\)

\(\Rightarrow AH=12cm\)

+ ) \(AB^2=BH.BC=9.25=225cm^2\)

\(\Rightarrow AB=15cm\)

+ ) \(AC^2=CH.BC=16.25=400cm^2\)

\(\Rightarrow AC=20cm\)

b ) Chứng minh được tứ giác ADHE là hình chữ nhật

c  ) Ta có :

+ ) \(HD.AB=HA.HB\)

\(\Rightarrow HD=\frac{HA.HB}{AB}=\frac{12.9}{15}=7,2cm\)

+ ) \(HE.AC=HA.HC\)

\(\Rightarrow HE=\frac{HA.HC}{AC}=\frac{12.16}{20}=9,6cm\)

\(\Rightarrow P\left(ADHE\right)=\left(7,2+9,6\right).2=33,6\left(cm\right)\)

\(\Rightarrow S\left(ADHE\right)=7,2\times9,6=69,12\left(cm^2\right)\)

Bình luận (0)
H24
Xem chi tiết
NT
15 tháng 6 2023 lúc 23:38

d: BK=BA+AK

BC=BE+EC

mà BA=BE và AK=EC

nên BK=BC

=>góc BKC=góc BCK

Bình luận (0)
NQ
Xem chi tiết
VN
4 tháng 10 2017 lúc 13:17

áp dụng hệ thức lượng vào tam giác vuông ABC có AH^2=BH.CH=9.16=144 nên AH=12  , áp dụng định lý pytago vào 2 tam giác ABH ,AHC ta được AB=15,AC=20       ADHE là hình chữ nhật vi có 3 góc=90độ      áp dụng hệ thức lượng ta tính được AD và DH 

Bình luận (0)
YM
Xem chi tiết
CL
22 tháng 12 2022 lúc 13:02

Em đưa cả ngữ liệu và đề bài đầy đủ lên đây để thầy cô và các bạn trong cộng đồng có thể hỗ trợ nhé!

Bình luận (0)
TD
Xem chi tiết
H24
16 tháng 7 2019 lúc 20:50

Xem nào...hmm...

\(D=x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=\left[\left(x+y\right)^2-2xy\right]^2+2.\left(xy\right)^2\)

Thay x + y = 4 , xy = 2 vào ta được ...

\(E=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^3+y^3\right)\)

\(=D\left(x+y\right)-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=4D-8\left[\left(x+y\right)^2-3xy\right]\)

Thay lần lượt D ở câu trên, x + y = 4, xy = 3 vào...

Bình luận (0)
HB
Xem chi tiết
NT
7 tháng 2 2022 lúc 14:50

a, Ta có : AD = AB + BD ; AE = AC + CE

mà AB = AC (gt); BD = CE (gt) 

=> AD = AE 

Vậy tam giác ADE cân tại A

Ta có : \(\dfrac{AB}{AD}=\dfrac{AC}{AE}\)do AB = AC; AD = AE(cmt) 

=> DE // BC ( Ta lét đảo ) 

b, Vì ^ABC = ^MDB ( đối đỉnh ) 

^ACB = ^NCE ( đối đỉnh ) 

mà ^ABC = ^ACB ( tam giác ABC cân tại A ) 

=> ^MDB = ^NCE 

Xét tam giác DMB và tam giác ENC có : 

BD = EC (cmt) 

^MDB = ^NCE ( cmt ) 

Vậy tam giác DMB = tam giác ENC ( ch - gn ) 

=> DM = EN ( 2 cạnh tương ứng ) 

=> BM = NC ( 2 cạnh tương ứng ) 

c, Ta có : ^ABM = ^MBC - ^ABC 

^ACN = ^NCM = ^ACB 

=> ^ABM = ^ACN 

Xét tam giác ABM và tam giác ACN có : 

AB = AC (gt) 

^ABM = ^ACN (cmt) 

BM = CN (cmt) 

Vậy tam giác ABM = tam giác ACN ( c.g.c ) 

=> ^AMB = ^ANC ( 2 góc tương ứng ) 

Xét tam giác AMN có : ^AMB = ^ANC (cmt) 

Vậy tam giác AMN cân tại A

Bình luận (0)
AM
7 tháng 2 2022 lúc 14:51

Bạn vẽ hình giúp mình nha

a. Tam giác ABC cân tại A nên AB=AC

Ta có: AE=AC+CE, AD=AB+BD 

Mà AC=AB, CE=BD

\(\Rightarrow AE=AD\) \(\Rightarrow\Delta ADE\) cân tại A

Xét \(\Delta ADE\) có: \(\dfrac{AB}{BD}=\dfrac{AC}{CE}\)

Áp dụng định lí Ta-let đảo \(\Rightarrow BC//DE\) (đpcm)

Xét \(\Delta BDM\) vuông tại M và \(\Delta CEN\) vuông tại N có:

\(\left\{{}\begin{matrix}BD=CE\\\widehat{MBD}=\widehat{NEC}\left(cùng.bằng.\widehat{ABC}\right)\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta BDM\)=\(\Delta CEN\) \(\Rightarrow\)DM=EN (đpcm)

Kẻ \(AH\perp BC\) \(\left(H\in BC\right)\)

Ta có \(\Delta ABC\) cân tại A nên AH vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow BH=CH\) 

Mà MB=CN (\(\Delta BDM\)=\(\Delta CEN\)\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\) cân tại A

 

 

Bình luận (0)
HB
7 tháng 2 2022 lúc 14:51

Có ai giải giúp mik kobucminh

Bình luận (0)